
www.manaraa.com

IMPLEMENTING SOCIAL LEARNING FOR MORE
EQUITABLE COLLABORATION IN

INTRODUCTORY COMPUTER SCIENCE
EDUCATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Seongtaek Lim

August 2019

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

22615048

22615048

2019

www.manaraa.com

c© 2019 Seongtaek Lim

ALL RIGHTS RESERVED

www.manaraa.com

IMPLEMENTING SOCIAL LEARNING FOR MORE EQUITABLE

COLLABORATION IN INTRODUCTORY COMPUTER SCIENCE

EDUCATION

Seongtaek Lim, Ph.D.

Cornell University 2019

Despite the collaborative nature of software engineering practice, computer sci-

ence (CS) education has focused on individual-centric pedagogy in teaching

how to program. Existing approaches to teaching it, consequently, often end up

ignoring important elements of training in professional programming practice,

such as working with teams and solving collaborative challenges in systematic

manners.

My research investigates approaches driven by a learning theory to teach-

ing novice students how to collaboratively program. This work first reviews

Vygotskian learning theory that informs about how learning happens in social

learning contexts. This social development theory says that effective learning

occurs in the zone of proximal development where a learner can perform tasks

with assist from more knowledgeable others. It also emphasizes the significance

of sign systems, tools, and language during the learning process, since they me-

diate both the direct interaction with others and the indirect interaction with the

broader society that embraces the domain of learning.

From the perspectives of student interaction as the source of learning, this

work builds and tests a real-time interactive student discussion tool, named

MOOCchat, in an online learning platform. The evaluation said that student in-

teraction can improve the performance in quiz solving tasks, even in the isolated

www.manaraa.com

online settings. Shifting from the online learning environment to physical class-

room settings, this work also reports on an exploratory study to understand

how students are currently guided to collaborative learning in programming

practice. The results showed that teachers are experiencing a lack of technology

support and the standard curriculum for teaching proper ways of collaboration.

To implement the social learning in CS classrooms and meet the needs

the prior work identified, this work proposes lesson plans and software tool

(GLIDE) built around them. An observational study with the educational in-

tervention in an actual high school classroom with GLIDE found supporting

evidence for the learning outcomes and the better balanced contributions from

peer collaborators. Finally, this study reports on quantitative evaluations on

the consequences of the educational intervention on the students’ learning ex-

perience, arguing that the proposed approach increases student engagement,

psychological ownership in their projects, and perceived fairness in collabora-

tion.

www.manaraa.com

BIOGRAPHICAL SKETCH

Seongtaek Lim’s research area falls in the intersection of human-computer in-

teraction (HCI), computer-supported cooperative work (CSCW), and education

technology. He builds interactive end-user systems and studies how the soft-

ware interacts with users and how it changes user behaviors. The software tools

he built address various topics including education, social computing, informa-

tion visualization, and information access and retrieval. He has worked at Fuji

Xerox Palo Alto Laboratory and KAIST since he received his B.S. in Computer

Science and M.S. in Cognitive Engineering from Yonsei University.

iii

www.manaraa.com

ACKNOWLEDGEMENTS

Looking back my 7 years, I have learned the meaning of being humble through

the toughest time of my life. It has been much more valuable lesson from God

than any other knowledge I was able to learn.

I wish to thank Tapan Parikh for the guidance, inspiration, and support dur-

ing my graduate studies. I deeply cherish the time I have spent working with

him. I have also benefited greatly from knowing and working with Steven Jack-

son, Ross Tate, and Rene Kizilcec at Cornell University. In addition, I appreciate

all the chances that Marti Hearst at UC Berkeley and Patrik Chiu at FXPAL gave

me.

I would not have been able to survive without the encouragement from the

numerous colleagues at Cornell University. I would like to thank Sujay Bhatt,

Vibhore Vardhan, Anthony Poon, Eugene Bagdasaryan, Neta Tamir, and Samar

Sabie. I also can’t even forget the support from the folks at UC Berkeley includ-

ing Adam Calo, Sarah Van Wart, Richmond Wong, and Noura Howell.

I would like to also acknowledge the financial support from many institu-

tions, which made me possible to pursue my goal. The execution of my study

was possible in part by the research grants from Google Social Interaction Pro-

gram and National Science Foundation. I also appreciate the research coopera-

tion from Information Technology High School in Queens, NY and Youth Radio

in Oakland, CA.

Finally, I owe the biggest thanks to my family and Gracepoint Church in

Alameda, CA for their priceless love and support.

iv

www.manaraa.com

TABLE OF CONTENTS

Biographical Sketch . iii
Acknowledgements . iv
Table of Contents . v
List of Tables . viii
List of Figures . ix

1 Introduction 1
1.1 Review of the Previous Curriculum Development in CS 1
1.2 Current Learning Resources for Introductory Programming . . . 5
1.3 How Can CS Education Support Collaborative Learning? 7
1.4 Outline of the Dissertation . 8

2 Literature Review 12
2.1 Social Development Theory . 12
2.2 Computer-Supported Collaborative Learning 16
2.3 Foundations for Theory-Driven Approach to Collaborative Pro-

gramming Education . 18

3 Study1: Bringing Student Interaction into Online Learning 21
3.1 Motivation . 21
3.2 Methodology . 23

3.2.1 Participants . 23
3.2.2 Design of Software and Tasks 23
3.2.3 Data Collection . 25

3.3 Results . 26
3.4 Discussion . 27
3.5 Summary . 30

4 Study 2: “Work Together on What and How?”: Potentials and Chal-
lenges in Teaching Collaborative Web Programming 32
4.1 Motivation . 32
4.2 Related Work . 33
4.3 Methodology . 34

4.3.1 Participants . 34
4.3.2 Data Collection . 35
4.3.3 Data Analysis . 35

4.4 Theoretical Background . 37
4.4.1 Cognitive Load Theory . 38
4.4.2 Cognitive Apprenticeship 39

4.5 Results . 41
4.5.1 Task Types . 41
4.5.2 Instructional Designs Interacting with Task Types 41

v

www.manaraa.com

4.5.3 Collaborative Approaches Interacting with Task Types . . 44
4.5.4 How to Support Discussion for Analysis and Review Tasks 46
4.5.5 What Works Well or Not in Supporting Implementation

Task . 48
4.5.6 What Makes It Hard to Teach Design, Code Sharing, and

Deployment Tasks . 52
4.6 Discussion . 55

4.6.1 Align Knowledge Types, Instructional Designs, and Task
Types. 55

4.6.2 Have Concrete Plans for a Certain Task and How Instruc-
tional Designs or Collaboration Would Help. 56

4.6.3 Teach and Support End-to-End Collaborative Workflows. 56
4.7 Summary . 58

5 Study 3: Observation of How Novice Students Learn a Scaffolded Col-
laborative Workflow 59
5.1 Motivation . 59
5.2 Related Work . 61
5.3 Proposed Approach and Research Questions 62

5.3.1 Educational Context . 62
5.3.2 Lesson Plans . 63
5.3.3 GLIDE . 66
5.3.4 Research Questions . 69

5.4 Methodology . 71
5.4.1 Participants . 71
5.4.2 Procedure . 72
5.4.3 Data Collection . 73
5.4.4 Data Analysis . 75

5.5 Results . 76
5.5.1 Learning Gains through GLIDE Approach 76
5.5.2 Utilitarian Benefits of Using GLIDE 86
5.5.3 Fair Contribution in Collaborative Web Programming . . . 90

5.6 Discussion . 95
5.7 Summary . 99

6 Study 4: Quantitative Evaluation of Students’ Learning Experience
with GLIDE 101
6.1 Motivation . 101
6.2 Hypotheses . 101
6.3 Methodology . 104

6.3.1 Participants . 104
6.3.2 Procedure and Experimental Design 104
6.3.3 Data Collection . 105
6.3.4 Data Analysis . 106

vi

www.manaraa.com

6.4 Results . 108
6.4.1 Survey Data . 108
6.4.2 Focus Group Interview Data 111

6.5 Discussion . 112
6.6 Summary . 116

7 General Discussion and Conclusion 117
7.1 Benefits . 117

7.1.1 Practical Contributions of MOOCchat 117
7.1.2 Practical Contributions of Exploratory Study on Instruc-

tional Designs . 119
7.1.3 Practical Contributions of GLIDE 119

7.2 Theoretical Implications . 121
7.2.1 Revisiting MOOCchat and GLIDE: Focusing on Social De-

velopment Theory . 121
7.2.2 Theoretical Contributions of Exploratory Study on In-

structional Designs . 124
7.3 Limitations and Challenges . 125
7.4 Future Work . 126

7.4.1 How to Better Facilitate Student Discussion through Bet-
ter Matching Schemes? . 126

7.4.2 How Will GLIDE Approach Help Learning Advanced
Level Techniques? . 127

7.4.3 How Can Non-CS Majors Benefit from GLIDE Approach? 128
7.5 Conclusion . 129

Bibliography 131

vii

www.manaraa.com

LIST OF TABLES

3.1 Survey questionnaire and responses from MOOCchat participants 27

4.1 Interview participants for exploratory study 36
4.2 Examples of interview questions per topic for teachers 37
4.3 Instructional designs according to cognitive load theory 39
4.4 Instructional designs according to cognitive apprenticeship . . . 40
4.5 Task types in web programming courses identified 42
4.6 Reported success of instructional designs per task type 43
4.7 Collaborative approaches identified 45
4.8 Reported success of collaborative approaches per task type . . . 46

5.1 Proposed Lesson Plans . 66
5.2 Content analysis results on the frequency misconception identi-

fied in the feature branch workflow 80
5.3 The changes of the removal of dedicated graphic designers iden-

tified in the coordination plans . 92
5.4 Contribution stats per group from Git log 94

6.1 Survey questionnaire . 107
6.2 Descriptive statistics (mean and standard deviation) 109

viii

www.manaraa.com

LIST OF FIGURES

3.1 A screenshot of MOOCchat (the initial version) 24
3.2 Illustration of structured task: collaborative quiz sessions 25

5.1 A conceptual diagram of the feature branch workflow. The di-
agram illustrates a new branch checked out (the curved arrow),
two new commits (the colored circles) made on the branch, and
the branch merged into master branch.) 65

5.2 Interactive navigation bar of GLIDE illustrating the scaffolded
feature branch workflow . 67

5.3 Screenshots of GLIDE user interface 69
5.4 Procedure for GLIDE Intervention and Observation 73
5.5 Sharing code and website content on an online messenger for

manual code integration by the group leader 93
5.6 Examples of commit trees showing that all the members can

work on code integration following the Git workflow 94
5.7 Repository “insight” visualizing the participants activity during

the project period on GitHub . 95

6.1 Procedure for intervention and survey 105
6.2 Effects of using scaffolded feature branch workflow on student

engagement, psychological ownership, and perceived fairness . 109
6.3 Effects of time on student engagement and psychological own-

ership . 110

ix

www.manaraa.com

CHAPTER 1

INTRODUCTION

There is recently growing interest in understanding how to better educate

the next generation of students in computer science (CS). Specific needs for

reformed CS education include covering modern topics [27], applying novel

pedagogical approaches for students’ improved learning in CS [74, 81], and im-

proving inclusiveness of computing education [114]. Such demand for changes

has fueled several initiatives of educators, policy makers, and researchers in the

field of CS education for next generation students. For example, CS4All of New

York City Department of Education (NYCDOE) has incorporated mandatory CS

units to ensure that every NYC student at elementary and secondary levels will

receive CS education by 2025 [2]. A non-profit organization, such as Code.org

[1], also has dedicated to expanding access to CS education to underrepresented

populations, providing learning materials and tools on its web platform. Al-

though such endeavors provide us with opportunities and promises to improve

the quality and impact of CS education, it is not yet fully discussed and deter-

mined on what specific topics to be embedded in typical classroom environment

and what pedagogical approaches to be taken in each of the CS courses.

1.1 Review of the Previous Curriculum Development in CS

One of the best ways to answer the question of what and how to teach next

generation CS could be looking backward into the history of CS education. Ac-

cording to Curriculum ’68 [5] by Curriculum Committee on Computer Science

(C3S), one of the earliest reports published on recommended computing curric-

ula currently accessible, basic CS courses for beginners traditionally consisted of

1

www.manaraa.com

Introduction to Computing, Computers and Programming, Introduction to Dis-

crete Structures, and Numerical Calculus. Other than the general introductory

course for larger areas of computing, the rest three courses are suggestive of a

huge emphasis on mathematics in CS education at that moment. Particularly,

the description of the elementary courses in the report says “certain courses

in mathematics are necessary, or at least highly desirable”. Among the basic

courses listed in the report, Computers and Programming looks rather distinct

in that it focuses on learning to use machine-interpretable languages to interact

with computer systems. This report still acknowledges the importance of the

programming course by stating that the programming course is “intended to

lay a foundation for more advanced study in computer science”.

A decade later, Curriculum ’78 [9] has taken very different perspectives on

CS curricula from the previous version [5]. It sets mathematics courses apart

from the CS course curriculum, such that only two out of eighteen CS courses,

Numerical Analysis and Linear Algebra, in the list directly cover mathematical

or algebraic topics. Although this report does acknowledge that mathemati-

cal concepts and techniques are crucial in CS education, it justifies elimination

of the other mathematics courses by stating “the kind and amount of material

needed from these areas for computer science usually can only be obtained, if

at all, from the regular courses offered by departments of mathematics for their

own majors”. In addition, none of mathematics courses and the two algebraic

CS courses are included as a prerequisite for entry-level students. Instead, the

report recommends students to take four topic areas: programming, software

organization, hardware organization, and data structures and file processing.

The changes made to the Curriculum ’78, compared to Curriculum ’68, sug-

gest that CS has begun to be considered as a distinct and separate discipline

2

www.manaraa.com

that solely covers computer systems at that moment. However, this approach

has also been criticized for providing potential misunderstanding that computer

science is all about programming [94].

In the early 90’s, Computing Curricula 1991 [119] shows significant changes

in perspectives on CS education from its predecessors. One of the most notable

features of this report is that it explains pedagogical principles as well as topics

to cover in CS curriculum. Especially, it allocates considerable number of pages

to emphasizing the role of programming in general and the importance of lab

activities in CS education in a broader context. While it ensures that program-

ming does not stand for the whole software engineering, it argues that novice

students should be able to be engaged in the mastery of programming through

their coursework, assignments, and lab activities. Furthermore, it demonstrates

that lab activities are important for students to experience teamwork projects

with other students in order to complete tasks. Although Curriculum ’78 also

mentioned that team project is a good option as a teaching method (“consid-

eration should be given to the implementation of programming projects by or-

ganizing students into programming teams”), but more specific and concrete

pedagogical recommendations have been made only in the early 90s.

Since Computing Curricula 2001 [23, 25, 103] has been introduced, CS cur-

riculum has become highly comprehensive and detailed in providing teaching

methods and teaching guidelines. The curriculum has been incrementally mod-

ified to reflect the rapidly-changing field and emerging topics, such as World

Wide Web and its applications, multimedia, and human-computer interaction.

From the historical perspective, it seems that CS curriculum has constantly em-

phasized the importance of exposures to programming activities for students,

3

www.manaraa.com

since its earlier versions. Even though the specific focus on the programming

practice has been changed (e.g., from algebraic concepts to networking princi-

ples), better elaborated (e.g., concurrency-related issues in 80s and 2000s), or

newly introduced (e.g., World Wide Web applications), the significance of pro-

gramming education has been constantly highlighted in CS curriculum.

To date, little effort has been yet made in developing the practical and spe-

cific CS curriculum that can better educate programming skills and knowl-

edge, despite its long-lasting emphasis put on programming education in the

previous carricula. One possible implication of the previous curricula is that

team projects are highly encouraged and desired for programming practice

[25, 103, 119]. None of the previous work, however, has focused on developing

concrete and systematic methods for implementing teamwork in programming

education, or justifying it by using further analytical and empirical approaches.

Therefore, my dissertation work aims to highlight the significance of teamwork

in programming education and discuss how to implement it in real world set-

tings. Another point to make based on the history of CS curriculum is that

targeted levels of students of interest are steadily expanding. Although the ear-

lier CS curriculum has primarily targeted 4-year undergraduate students, later

curricula extended its scope to 2-year college programs [25]. It also suggested

that an increasing number of students are expected to get exposed to comput-

ing education at the secondary level [119]. However, it has not been yet vali-

dated whether the existing curricular are also suitable and effective for younger

and more entry-level students. Since new standards and principles for teaching

younger groups of students at entry or introductory level with little computing

experiences still need to be established, this work will focus on CS education

for novice students at the secondary level to provide new insights into how in-

4

www.manaraa.com

troductory programming needs to be developed and implemented for younger

students.

1.2 Current Learning Resources for Introductory Programming

Developing better tools to enhance learning of students with little exposure to

computer programming has been an active research area in the field of com-

puter science education. Most effort has been made in developing tools that

better engage students in programming activities. Interacting with computer

systems using programming languages requires understanding on computer

architecture (e.g., memory space, file systems), programming language syntax,

control flow, programming paradigm, and domain-specific high level logics and

concepts. For students who do not have enough background or experiences,

therefore, it is critical to develop the educational resources such as software

tools that are dedicated to familiarizing them with these aspects.

“Scratch [99]” is another well-known example of educational tools for in-

troductory programming. Using Scratch, learners can easily create projects by

assembling color-coded blocks of programming elements; they can combine

block-like operators to generate animated motion of objects, handle user-input

events, or manipulate the control flow of the program. Moreover, it is also be-

ing used for teenagers or even younger children, because creation of interesting

programs is relatively easy and can be online-based for social interaction and

collaborations among the users. It supports collaborative projects through its

built-in feature of “remixing” by which a user can add their own products onto

the top of others’ projects. According to the large-scale analysis on the data

5

www.manaraa.com

from Scratch projects, sharing projects for collaborations can serve as a pathway

to learning and improving computational thinking [35]. Thus, Scratch provides

an example of how collaborative learning can be effectively used for education

of introductory programming.

On the other hand, there is an alternative view that more general purpose

languages such as Java, Python, or JavaScript should be directly introduced

in programming education, rather than starting with Logo or Scratch [78]. It

has been suggested that exposing novice students to such full-featured pro-

gramming languages is a better way to motivate them [53] and more practi-

cally applicable [93], compared to teaching education-purpose programming

languages first. Several attempts have been made to help novice users learning

the general-purpose programming languages with different aspects of program-

ming. For example, “DrJava [4]” provides interactive REPL (read-eval-print

loop) interface to provide an easier debugging environment for novice users.

“Python Tutor [52]” provides step-by-step visualization of internal operations

so that novice users can better understand what’s happening in heap, stack,

and console area in the execution of the code. “Pythy [40]” is a cloud-based

application platform that abstracts away installation of development tools, file

management, and searching for example codes. These examples demonstrate

that much effort has been made to to reduce novice users’ learning curves in

programming practice.

Taken together, the previous research work in the field mainly focused

on identifying the appropriate programming languages and educational tools

for teaching introductory programming and syntax: Logo simplifies drawing

mechanism based on units of geometry; Scratch abstracts away coding pro-

6

www.manaraa.com

cess and supports the block-based visual programming via its drag-and-drop

UI; and Python Tutor provides visual cues for internal operations on memory

structure in executing user’s code.

1.3 How Can CS Education Support Collaborative Learning?

The overarching goal of my dissertation work is to foster collaborative pro-

gramming environment for novice students in CS. The literature review in the

previous sections (1.1 and 1.2) suggests that the previous CS curricular and re-

search work on introductory programming education have heavily focused on

teaching the syntax of programming languages to individual users in an iso-

lated, non-collaborative learning environment. Although mastering program-

ming skills is an important aspect of CS education, there are also other areas

to be considered as the fundamentals of CS education rather than just being

comfortable with writing code: Being a CS major is much more than learning

how to code [55]. Therefore, my dissertation work first addresses the important

aspect that has been widely overlooked in the previous literature and CS teach-

ing curricula: effective approaches to implementing collaborative programming

environments to the introductory education for beginning students.

K-12 CS framework [44] expects that students who received CS education at

the secondary level should be able to utilize their collaboration tools to build

complex software by effectively working together with other students. In real-

ity, however, collaborative learning environment is not easy to be implemented

in CS classrooms and fostering it is also an under-explored research area. Al-

though collaborative learning method such as pair programming, is known to

7

www.manaraa.com

be a very effective strategy, most of these approaches are not closely linked to or

built in the CS curriculum, but is considered to be rather supplementary. Fur-

thermore, even the most widely used platforms for younger students’ collabo-

rative programming, such as Scratch, do not effectively support collaborations

that involve direct social interactions between users. In addition, its features are

not sufficient to support the complex and dynamic aspects of collaborative pro-

gramming projects in the real world settings. Therefore, my dissertation work

focuses on how to better implement collaborative programming in the CS cur-

riculum, so that the skill sets acquired in the classroom can be extended and

applied to real-world industrial settings.

1.4 Outline of the Dissertation

In Chapter 2 of my dissertation, we will first review the literature on social de-

velopment theory by Vygotsky [127] in the field of developmental psychology.

The social developmental theory will provide the foundation of the roles of so-

cial interactions in social, cognitive development and learning. This theory also

has significant implications for the framework on interactive, multi-user com-

puter systems, especially for the purpose of learning. The social development

theory will also provide insights into general principles for designing learning

activities, defining the roles and the types of interactions in learning of begin-

ning students, and facilitating their meaning construction [70]. To establish ef-

fective methods for the social interaction in learning, we will then review the

existing literature on computer-supported collaborative learning (CSCL) [65].

The CSCL literature will provide us with better understanding of what types of

interactive process using computer software would lead to successful collabo-

8

www.manaraa.com

ration in learning contexts and how to support this. Chapter 2 then will end by

discussing and high-level design principles that will potentially help designing

effective and novel approaches to implementing a collaborative environment to

CS classrooms.

Chapter 3 will describe the preliminary study that explores software-

structured collaborative learning. It will illustrate the empirical work that as-

sessed the feasibility of a specific software design to structure users’ behavior on

it and their task performance. we will first describe the preliminary experiment

on collaborative learning performed using a software tool, named “MOOC-

chat”. MOOCchat is an educational software tool to facilitate chat-based peer

learning processes in MOOCs (massive open online courses) settings. It creates

ad-hoc discussion groups for users who are available in the online waitlist in

each of the periodical quiz sessions. It scaffolds interactions between users in

these discussion groups while they solve the quiz individually and collabora-

tively. The findings of the study suggest that 1) the software design with the

sequential phases effectively guided the participants to the intended behavior

for collaborative learning and 2) the collaborative approach to problem solving

through the text chat in small groups significantly improves the performance of

the users.

Chapter 4 will explore how students learn to collaborate with other students

in the real-world learning environment, rather than a simulated context de-

scribed in Chapter 3. We will describe a qualitative study on the instructional

approaches to teaching novice users web programming in real-world classroom.

This study conducts interviews with teachers to characterize the potential chal-

lenges and problems in implementing collaborative learning environments to

9

www.manaraa.com

the lab sessions at secondary level. We will discuss these potential challenges

by relating to the theoretical frameworks on cognitive load and cognitive ap-

prenticeship. To summarize the findings, the qualitative data analyses from the

interviews revealed three major challenges. First, collaboration is surprisingly

unstructured in lab activities, suggesting the need of better structures to be im-

plemented to collaboration. Second, there seems to be a mismatch between the

types of knowledge students need for the task and the instructional strategies.

Finally, teachers encounter difficulties in successfully convincing their inexperi-

enced students to appreciate the importance of the collaborative process and its

consequences.

Chapter 5 will discuss how these challenges can be addressed when imple-

menting collaborative learning. It will propose a novel approach to implement-

ing collaborative programming with lesson plans and a supporting software

tool for the lesson plans. It will further illustrate more specific requirements, de-

sign considerations, and implementation strategies for the proposed approach.

Based on the proposed approach, it will also introduce a software tool named

“GLIDE (Git-Learning Integrated Development Environment)”. GLIDE pro-

vides users with useful resources and guidance to a simplified version of stan-

dard Git workflow. Chapter 5 also describes the design-based research (DBR)

that explores the deployment of the proposed approach to teaching collabo-

rative programming in a real-world classroom. Specifically, this observational

study looked into how this approach affects the process and the outcomes of the

class projects by novice students. The findings from the observation and focus

group sessions showed that utilizing an appropriate teaching method will allow

high school seniors to understand the concepts on the structured collaboration

process and perform group projects by following the proposed workflow, even

10

www.manaraa.com

when they only had basic literacy in web client programming (HTML, CSS, and

JavaScript) and just a little experience in team projects.

Chapter 6 will quantitatively evaluate the performance of the students af-

ter the classroom intervention with GLIDE. In this field experiment, we ex-

amined the effects of the intervention on students’ experiential and attitudinal

outcomes. The findings suggested that better understanding of the basic con-

cepts in structured collaboration and scaffolding educational tools facilitated

relevant communication between the students and improved qualitative aspects

of learning, including better self-efficacy, class engagement, psychological own-

ership of the group projects, and perceived equity in project coordination.

Finally, Chapter 7 will conclude by discussing the implications of this work

including contributions to the field, limitations, and future directions of this

study.

11

www.manaraa.com

CHAPTER 2

LITERATURE REVIEW

This chapter reflects on the existing literature that provides theoretical basis

for this dissertation work builds on. The literature review starts with social

development theory as the theoretical foundation to understand how learning

occurs in this dissertation. And then, it discusses prior works on computer-

supported collaborative learning (CSCL) in CS, as a more concrete approach to

learning through social interaction with the guidance from computer software.

2.1 Social Development Theory

Social development theory [126, 127] is a learning theory that views learning

as internal developmental processes where knowledge and abilities are inter-

nalized through social interactions. Vygotsky [126] used the concept of devel-

opmental level, which indicates functional, psychological, and mental maturity

of a student in explaining where and how learning occurs. The actual devel-

opmental level (ADL) means the conceptual domain that a student has already

matured into, so that she has developed the ability to independently solve prob-

lems corresponding to this domain. On the other hand, the potential develop-

mental level (PDL) means the higher level domain where she can solve prob-

lems with guidance from “the more knowledgeable other (MKO; for example,

a teacher, parents, or peer collaborators)”. This learning theory argues learning

that aims the PDL facilitates a student’s development, which is otherwise in-

effective. This makes a point of the concept of zone of proximal development

(ZPD) as where learning occurs, indicating the distance between ADL and PDL.

Thus, in order to facilitate a student’s internal development, social development

12

www.manaraa.com

theory suggests that the MKO should provide the appropriate assistance for

tasks or knowledge in the student’s ZPD through interaction with her.

Social development theory roots in the significance of tools and sign systems

through which social interaction occurs. Vygotsky [125] believed that language,

as the representative tool and also sign system for social interaction, is very

important in learning for two reasons. One reason is that, when a student in-

tellectually develops in ZPD with guidance from MKO, language is the main

means for the information exchange during the social interaction. This idea up-

holds the general theme of this learning theory that learning is a socio-cultural

process because language itself has been formed under the cultural develop-

ment of a society over the course of human history. Hence, learning through

social interaction using the language, which is socially accepted and agreed on,

includes the broader and more abstract sense of interaction with the society as

well as the direct interaction with the MKO in learning context [127]. Another

reason is that a student actively uses her own language in the process of inter-

nalization to adapt the information that came from the social interaction. The

active process of internalization, rather than passive copy, of knowledge that

came from social origins is the central element of Vygotskian learning theory

[46]. A student uses her personal interpretation in the form of language when

this process takes place. Thus, this learning theory focuses on the tools and sign

systems, such as language, in the core part of the learning process. This idea has

become the pivotal foundation of the constructivist learning theory that learning

is an active, interactive, and contextual process, rather than a unidirectional and

didactic process, through which all knowledge is constructed from the learner’s

experience and interpretation [15].

13

www.manaraa.com

Existing research took Vygotskian approach to better understand novice stu-

dents’ learning in CS. Gillespie and Beisser [48] explored how young students

age of seven learns Logo programming language. The teachers who partnered

with the research team had the pedagogical basis of Piagetian learning theory,

which weighs more on the children’s biological development and their own

construction of knowledge [90, 133]. However, the young children’s learning

process turned out to be better aligned with Vygotskian theory, according to

the observation that they learn through social interaction with MKOs includ-

ing adults and more competent peers. Deepening this discussion, Whalley and

Kasto [131] identified the patterns of ZPD of novice students in learning Java

programming. They observed the developmental levels where each participant

can solve problems either independently or with a teacher’s situational help

while taking programming tests with three different complexity levels. Their

findings, in consistence with the theory, suggested the importance of use of lan-

guage both for interaction and internalization as a useful indicator of a student’s

learning. Participants who performed well in the tests were able to interact

with the teacher using their own language, whereas those who didn’t had diffi-

culty in tracing and explaining their solutions. Another approach was taken by

Hundhausen [57] where he reported positive learning outcomes when he had

the students present animated explanation of algorithms they implemented in

an undergraduate algorithms course. This work supports the Vygotskian argu-

ment that students learn better when they’re given a chance to represent the

knowledge they constructed in their own language and interact with others

using their own representation. Moreover, this study pointed that algorithm

visualization the students constructed was effective in mediating the student

interaction, which expands the interpretation of tools and sign systems in Vy-

14

www.manaraa.com

gotskian learning theory into computer-mediated interaction. Despite the in-

fluence of the learning theory on CS educators and these examples of existing

research, it is not often explicitly discussed in CS education, compared to the

vast amount of literature on it in science and mathematics education [16]. This

research tries to continue the discussion relevant to the socio-cultural learning

theory into CS education for novice students.

From the perspective on how learning occurs provided by social develop-

ment theory, this theory guides my work to the clear design of lesson plans

that implements a novel approach to learning collaborative programming in CS.

First, this theory provides a framework for planning and designing the learn-

ing context using the introduced concepts of ADL, PDL, and ZPD. This will

directly help this dissertation work specifying the lessons with what develop-

mental level the potential target students have generally matured into (ADL)

and what functions and knowledge are learnable, falling in their ZPD, con-

sidering their PDL. Second, the gravity placed on ZPD in this theory advises

that teachers should design “guided participation” from students in the learn-

ing process. Learning functions and knowledge in PDL, by definition, requires

help from MKO, so guided participation denotes the way to facilitate learning

through interactive and collaborative ways. My dissertation work focuses on

the design that guides students to learn practical functions and underlying con-

cepts in collaborative programming in interactive ways as suggested. Lastly,

this learning theory informs this work about what roles tools and sign systems

play in learning. This theory indicates that language is used to support both so-

cial interaction with others and internalization on a student’s own. Inspired by

Hundhausen’s work [57], my dissertation continues using the extended mean-

ing of tools and sign systems as language to represent ideas and knowledge,

15

www.manaraa.com

which provides a guideline for the design of the tools this research proposes.

2.2 Computer-Supported Collaborative Learning

Collaborative learning is an educational approach where students work to-

gether in solving problems or completing tasks [47]. It stems from the idea

that learning occurs in a social context when the learners actively participate

in the social interaction [109], which implies a thread of connection with Vygot-

sky’s social development theory. As one of the instructional methods to support

collaborative learning, this section reviews the existing literature on computer-

supported collaborative learning (CSCL) that involves software tool as the me-

diator of collaboration. Also, as existing literature says the effectiveness of col-

laborative learning varies according to the specific learning settings [39], this

section focuses on CSCL approaches dedicated to support learning in computer

programming in CS.

Existing research made diverse attempts to take advantage of CSCL ap-

proach in CS. One substantial class of them is based on the idea of sharing the

artifacts to build. For example, Fields et al. [43] studied collaborative learn-

ing for high school students who built animated music video using Scratch.

They designed the programming task to involve the multi-level structure of col-

laborative support; each student was guided to come up with the individual

segment of music and also build on top of multiple layers of contribution from

group members, mentors, teachers, and unknown Scratch users online. Their

findings claim that this specific way of “nested” design of the task revealed

potential inconsistency of program state among the different levels of collabora-

16

www.manaraa.com

tion, which brought about the students’ learning on the concept of initialization.

This type of collaborative programming is supported through project-sharing

mechanisms, such as “remixing” [35, 36, 77]. On the other hand, Urai et al.

[120] explored various tool supports for pair programming practice in distant

settings. Pair programming is a typical example of collaborative programming

where two programmers work together with the dedicated roles of driver (who

writes code) and navigator (who reviews code written by the driver). Although

the genuine form of collocated pair programming doesn’t necessarily take CSCL

approach, there have been several attempts to support distant communication

in pair programming in the shared project through a synchronized code editor

[18, 38, 84, 118]. To sum up, CSCL approaches in this category provided asyn-

chronized sharing features for existing projects that help students to build on

top of others’ work or synchronized co-work mechanisms on the shared project.

Another significant chunk of works in CSCL in CS is to support students to

communicate with each other sharing their representation of concepts to learn.

HabiPro [124], for instance, is a software tool designed for students to collabora-

tively solve programming-related problems. The tasks included identifying er-

rors, reordering code segments, predicting the return values, and completing a

partial program. It has a text chat tool where a group of students can discuss the

problem to solve. The authors argued that this approach doesn’t directly teach

how to program, but gives novice students a chance to reflect on their code

and observe others thoughts, which is one of the critical aspects of collabora-

tive learning. Similarly, CAROUSEL [58] takes constructivist learning approach

to computer algorithms by allowing students to build multimedia representa-

tion in explaining algorithms. The students were also allowed to discuss and

evaluate the algorithm representations that other students generated won the

17

www.manaraa.com

tool. The results of the quantitative evaluation on this approach show that the

students engaged in creating their own explanations and improved their under-

standing through the representation process. In sum, several CSCL approaches

in this category primarily focused on providing verbal or graphical communi-

cation channels for social interaction among the students, which consequently

help them learning concepts and practice of programming [29, 71, 95, 102, 108].

2.3 Foundations for Theory-Driven Approach to Collaborative

Programming Education

The review of the literature on social development theory and related works

in CSCL provides the theoretical framework of my dissertation. As a theory-

driven approach to learning in collaborative programming, this work designs

the collaborative learning environment and empirically tests the design ap-

proach, where the learning context roots in Vygotsky’s learning theory and the

concrete method follows the principles in CSCL.

First, informed by the learning theory, my dissertation considers what sign

systems and tools to provide in order to facilitate learning. Existing works in

CSCL have proposed a lot of novel tools supporting social interaction among

students during their learning process. Even though this looks well aligned

with Vygotsky’s theory that learning occurs from social interaction, there has

been little consideration on the sign systems and tools that mediate the stu-

dents and social context, but not only the learning context, as the socio-cultural

products. The sign systems and tools in which the students communicate

should help them (indirectly) interact with the broader sense of social con-

18

www.manaraa.com

text, be part of the social context that has generated the tools, and internalize

the socio-culturally constructed knowledge gained through interaction for their

own mental development. This suggests that a potential approach to learn-

ing in collaborative programming should actively embed norms, terminology,

affordances of software, and widely accepted processes to collaborate in the

learning context. Israel et al. [60] also pointed that collaboration models being

used in actual classrooms, such as teacher-facilitated model and peer tutoring

model, don’t fully reflect on the realistic model of collaborative programming,

implying the discontinuity between the learning context and the social context.

Therefore, this theory-driven approach aims to design the learning context that

reflects the socio-cultural aspects of collaborative programming in real-world

practice.

Second, grounded in the concepts of ZPD (where learning occurs) and

guided participation (the method to facilitate learning in ZPD), this work will

take scaffolding approach to facilitate novice students’ learning in PDL. Scaf-

folding is one of the most widely accepted ways to interpret guided participa-

tion [86, 101]. Wood et al. [132] first coined the term “scaffolding” to describe

how teachers and parents can help learning in guided ways. They argued that

the effective teaching requires two concrete ideas: 1) the conceptual model on

the task with how it may be completed and 2) the conceptual model on the

performance characteristics of the student. Combining these two, a teacher

can design the instruction where she reduce degrees of freedom, redirect stu-

dents, and marking critical features, or demonstrate her own task performance.

In response to this, successful examples of CSCL approaches in CS included

well-structured task designs along with the software tools supporting the tasks.

Thus, this work tries to follow scaffolding approach to facilitate novice students’

19

www.manaraa.com

learning in ZPD.

Lastly, this work tries to extend the existing literature on CSCL by embed-

ding computer-supported collaboration in lab activities of programming. In

overall CSCL literature across the disciplines, mediated communication in ver-

bal language or other digital representation through software tools is one of

the most common ways to support learning in selected lessons. Literature on

CSCL in CS also rendered the foundation of collaborative learning in similar

ways. However, CS courses, especially programming courses, might have more

diverse opportunity to take CSCL approach since their coursework materials,

assignments, and lab activities are already built on computer systems by its na-

ture. Besides, the historical perspective on CS curricula has been calling for

better support for lab activities in CS courses. Thus, this work will suggest a

mediating software tool for computer-supported collaborative programming as

a lab activity.

20

www.manaraa.com

CHAPTER 3

STUDY1: BRINGING STUDENT INTERACTION INTO ONLINE

LEARNING

3.1 Motivation

The foundations for theory-driven approach to collaborative programming ed-

ucation (section 2.3) call for needs of dedicated software tools that mediate stu-

dent interaction and guide their task process in learning context. Along with the

theoretical foundation as a starting point for the rest of the dissertation work,

it is also important to understand the practical aspects of collaborative learning

structured by software and task designs that implement the theme of computer-

mediated collaborative learning. This chapter describes the first empirical study

that explored such software-structured collaborative learning. The purpose of

this study is to test out a relatively simple and rough approach to support collab-

oration in learning in CS and learn how students react to the proposed design.

Online education is often identified as a learning environment with limited

students interaction because students are neither collocated, nor are they pro-

gressing through course materials on the same schedule. That is, they are iso-

lated in terms of both space and time, which makes online education a domain

calling to engage in challenge to support their social interaction for learning. Ex-

isting CSCL literature has shown several examples of text chat-enabled online

workspaces where students perform individual tasks with extra communica-

tion channels [102, 124], but there has been little attention paid to collaborative

learning that involves online social interaction as an integral part of the tasks.

This study tests out a novel design of structured collaboration tasks with stu-

21

www.manaraa.com

dents interaction in online CS education.

This study is inspired by the literature on structured peer learning [83, 111].

Peer learning in physical classrooms structures students activities in which they

have discussion in small groups to come up with solutions to problem-solving

tasks. The significant pedagogical benefits of peer learning as a practical teach-

ing method, including improved critical thinking skills, retention of learning

gain, interest in subject matter, have been well documented by literature in sev-

eral disciplines [26, 37, 76, 110]. Hence, this study implements a simple version

of structured peer learning for online CS courses.

The idea of introduction of peer learning into an online education platform

gets well aligned with the theoretical background of this dissertation work. One

rationale is that peer learning, as a practical teaching method, encourages stu-

dents interactions in the learning context, so that the interactions facilitate inter-

psychological development [127] stated in Vygotskian learning theory. Another

way peer learning in online education roots in the theory is that the students

are required to actively process information for their own meaning construction

while participating in discussion, rather than passively accept it. This helps the

internalization process [46] whose important role in learning has been pointed

out in social development theory.

22

www.manaraa.com

3.2 Methodology

3.2.1 Participants

61 students taking the online course of CS.169.2x Software as a Service on edX

participated in this study. They were recruited through the course announce-

ment and their participation was voluntary. The announcement stated there

won’t be monetary compensation or advantages in grading upon the partici-

pation, but encouraged their participation for the benefit in their own learning

through collaborative learning tasks (practice quiz sessions, explained below)

designed toward improved learning outcomes and experience. The six-week

course was intended for students with an undergraduate CS major level of ex-

pertise. Given the MOOCs (massive open online courses) settings, it was hard

to collect accurate and detailed demographic information of the participants.

3.2.2 Design of Software and Tasks

We built a software tool named MOOCchat. MOOCchat is a tool to run collabo-

rative quiz sessions designed to be integrated with MOOCs web platforms. The

main features of it included real-time grouping of users who are online, assign-

ing quiz materials to each group, sharing the answers from individuals within

the group, and allowing them to discuss using a timed chat tool (Figure 3.1). To

bring students together into synchronous groups in online education settings,

approaches from team formation in multi-player games and real-time crowd-

sourcing [75] was adopted; the “bus terminal model” was implemented so that

a new quiz session begins at regular time intervals if there are users waiting

23

www.manaraa.com

online. MOOCchat is designed to form as many triads as possible, dyads if less

than three users are remaining among the waiting users. In cases where there

is only one user remaining online, MOOCchat was supposed to serve a non-

collaborative practice quiz session for the user. MOOCchat was a web-based

application built with Node.js.

Figure 3.1: A screenshot of MOOCchat (the initial version)

MOOCchat was deployed in the Fall 2013 offering of edX’s CS.169.2x Soft-

ware as a Service. The intervention provided students with an online collabora-

tive practice (ungraded) quiz session that they could opt to take using MOOC-

chat integrated with the course website. MOOCchat structured the online quiz

task in three stages; 1) MOOCchat organizes students into small groups, 2) it

gives them a chance to individually answer a question, and then, 3) it displays

everyone’s responses and places them in the group’s private chat room so they

can discuss the answer. These three stages of collaboration were guided by a

24

www.manaraa.com

server-controlled timer counting down to keep the group of students in sync.

When the timer runs out, the students were able to have the final chance to

change and submit individual answers. Finally, they were then shown the cor-

rect answer with an explanation. They then moved on to the next question to

repeat the three-staged quiz session (Figure 3.2). The questions were composed

by the instructor of the online course to help them review and better understand

the course materials.

Figure 3.2: Illustration of structured task: collaborative quiz sessions

3.2.3 Data Collection

To understand students’ initial experience and thoughts on the software-

structured collaborative task, we gave them brief survey questions at the end

of the quiz session. This survey was to get qualitative understanding on partic-

ipants’ reaction to the tool and the method, rather than statistical analysis for a

25

www.manaraa.com

confirmatory study or hypothesis testing.

3.3 Results

61 students took the practice quiz and completed the survey, which began every

hour. Of these, only 16 were successfully placed in a discussion group of 2 or 3

participants; six of them were placed in groups of 3, and ten were in groups of 2

(More groups were not formed because not enough students arrived at the same

time for the same session; a large MOOC with thousands of students could have

a higher grouping success rate). The focus of this report is on the experiences

of those students who did have a discussion with others using the chat tool to

draw implications for collaborative learning.

Table 3.1 shows the post-quiz survey results, indicating overall positive re-

sponses to this online intervention. In response to “Other students helped me

learn during the discussion,” one student wrote “Yes, by having to explain my

answers to the other students it forced me to think more deeply about the ques-

tion,” which was one of the central tenets behind peer learning. In terms of

group size, 6 out of 10 of those in dyads indicated they wanted more people in

the discussion whereas everyone placed in triads indicated this was the right

size for the discussion, reflecting results from the peer learning literature that

dyads do not lend themselves to good discussions.

One of the survey questions was an open-ended one (not shown in Table 3.1)

asking “Do you have any feedback about your experience using this discussion

tool? What worked well and what can be improved?” The students expressed

general satisfaction. one student commented that “It was my first time using

26

www.manaraa.com

Table 3.1: Survey questionnaire and responses from MOOCchat partici-
pants

Survey Question

Agree

/ Strongly

Agree

Neutral

Disagree

/ Strongly

Disagree

Discussion was helpful for final choice 11 2 3

I was able to help others learn 9 4 3

Other students helped me learn 9 4 3

I liked discussing questions in a small group

and would like to do so again
14 1 1

this. I think that overall it is a great tool. We were able to have some brief dis-

cussion and it probably is the closest thing that we can get to being the same

activity that is in the course.” Another wrote “That is very interesting, useful

and fun. Cool.” A third wrote “It’s really cool, and make learning more inter-

active!!!” These comments suggest that students in an online course are quite

positive about this approach. Also, small coordinated group chats may success-

fully lead to better learning and retention as has been found widely in the peer

learning literature.

3.4 Discussion

We have developed MOOCchat and an instructional method to form syn-

chronous discussion groups in MOOCs using the tool. Also, the software tool

and the collaborative task design were tested out in an actual online course. It

was the first step in understanding how software can guide students collabora-

tion in an online education environment, but much work remains to be done.

27

www.manaraa.com

The first takeaway in terms of the software design is that the staged model

works very well in structuring students behavior in using the tool. It seems that

the students perceived the linear staged model straightforward, judging from

no attrition observed out of 61 students who began the task. None of the open-

ended feedback comments in the survey had negative report on the difficulty

in using the tool or following the collaborative task. More encouragingly, the

staged model worked well in guiding the cognitive tasks (e.g., reading passages

and figuring out the answers) as well as the behavioral tasks (e.g., clicking but-

ton to proceed and typing texts for discussion). This could be useful design

implication for future works.

As the survey feedback shows, MOOCchat successfully facilitated students

interaction around the task. The task design wise, it seems that the separa-

tion of individual task from collaborative part (discussion) and deliberately us-

ing the outcomes of individual task (answers) in the collaborative task (sharing

the group members’ answers) contributed to the feasibility of performing the

task, judging from the responses to the survey question “Discussion was help-

ful for final choice”. For further investigation, we conducted another iteration of

MOOCchat in a crowdsourcing platform to verify the quantifiable effectiveness

of this approach. In that experiment, participants who were grouped for the col-

laborative tasks marked higher rates of correct answers in the quiz, compared

to solo participants; among the 169 responses provided by solo participants,

84 (50%) were correct, where among the 269 responses from crowd workers

who participated in a discussion group (dyads or triads), 169 (63%) were cor-

rect. This difference turned out to be statistically significant (Fisher’s two-tailed

exact test, p ¡ 0.01). This supports that MOOCchat approach successfully facili-

tated the students interaction, which played a key role in performing the tasks

28

www.manaraa.com

[31].

This study also had several limitations, which opens the possibility for the

next step going forward. The online learning environment renders a lot of po-

tential for novel approaches to learning with lower cost and higher accessibility,

however, it also rendered serious defects as a research testbed. For example, the

synchronous online collaboration is heavily affected by disperse attendance at

any given time because online learning environment heavily relies on an indi-

vidual’s self-directed or self-paced learning, which is on the opposite of struc-

tured learning. It might be possible to strictly schedule the participation to alle-

viate this issue, but this scenario less reflects on the real-world learning context

as a natural field test. Consequently, the MOOCchat experiment left almost

three quarters of the overall voluntary participants ungrouped for the collabo-

rative task. This can’t be the ideal setting for the research trying to develop and

test collaborative approaches to learning with students in the actual learning

context.

We argued that MOOCchat approach effectively facilitated interaction.

However, given that the students could answer multiple choice questions and

collaborate to identify and correct errors in those answers through text chat,

there is no evidence that the interaction has brought about learning; a possible

alternative explanation is that the students had a chance to give a second look

into their answers when others in the discussion group express different opin-

ions, or even more simply, they could have corrected the answers just following

others’ opinions. MOOCchat approach could be justified for its own purpose

that the review and self-evaluation through peer discussion on the coursework

materials were much needed to help the specific target students learn. How-

29

www.manaraa.com

ever, the findings are hardly sufficient to expand to social learning in introduc-

tory programming practice due to the use of the ad-hoc grouping and chat tool.

Possible reasons include the simplicity of the task (answering multiple choice

questions), the way of collaboration (a free-form text chat for a limited period of

time), the level of engagement (self-directed online learning not being graded).

This calls for further investigation in students tasks taking longer term, with

higher complexity, which better engages them in and in better structured ways.

Another limitation, considering the general goal of this dissertation aiming

to provide a social learning method for collaborative programming, was that

the collaborative quiz task we designed didn’t provide the authentic experience

in programming or yield potentials to iterate in that direction. Given the course

materials that addressed programming issues and practice (Ruby on Rails), giv-

ing Ruby-related questions for collaborative quiz sessions would have been as

close as MOOCchat approach can get to programming education through so-

cial interaction. Even with those questions, it would have been more of another

replication of syntax-oriented learning in programming with extra communica-

tion channels among peers, which doesn’t fulfill this dissertation’s vision that

introductory programming education should be designed toward collaboration.

3.5 Summary

We conducted an experimental study to explore the practical feasibility of

software-structured collaboration and to learn about how students behave on

and react to it. This study designed MOOCchat approach that facilitates stu-

dents interaction around collaborative quiz sessions and deployed it to an on-

30

www.manaraa.com

line CS course. This method organized students into ad-hoc small groups to

discuss their answers and rationale for the answers, to employ peer learning as

the instructional method where students exchange their ideas in learning from

others. The post-task survey results said that students were very positive about

both the experience and the effectiveness of this approach. We concluded that

MOOCchat successfully brought much desirable students interaction in an in-

nately isolated online learning environment, but there wasn’t enough evidence

that actual learning occurred through their interaction. This calls for more care-

ful consideration on research domain and programming tasks that more directly

connect to learning for future works and also better understanding on actual

learning environment.

31

www.manaraa.com

CHAPTER 4

STUDY 2: “WORK TOGETHER ON WHAT AND HOW?”: POTENTIALS

AND CHALLENGES IN TEACHING COLLABORATIVE WEB

PROGRAMMING

4.1 Motivation

The preliminary study led us in a new direction; we felt the necessity of ex-

ploring classroom environments and how students are guided to learn in in-

troductory programming courses. One reason is that online learning environ-

ment that relies solely on each individual student’s self-directed study may

not allow us to introduce a novel approach with a focus on guided participa-

tion or “well-structuredness” and observe the students behavior; due to un-

structured progress of individual students, decontextualized observation, low

turnout rates, and extreme selection bias of the participants. Also, to make in-

tervention into a physical classroom environment, we need to better understand

how students are currently learning. Thus, this chapter explores how students

are guided to learning in an engaging CS topic for novice students.

Web development has become one of effective topics for engaging novice

students in CS. Teachers and CS education researchers have made diverse at-

tempts to teach web-based technologies in the CS curriculum [3, 69, 72, 78, 80,

96, 115]. For example, Mercuri et al. [80] used web programming languages for

introductory programming, finding that website-building is highly engaging

for students. A similar argument was made by Stepp et al. [115] in his quanti-

fied evidence on students’ gradual curve of perceived difficulty and constantly

high enjoyment across sub-topics of a web development course. Furthermore,

32

www.manaraa.com

such enjoyment resulted in an increase in student’s motivation for taking CS

advanced courses in their investigation. These examples also illustrate the im-

portance of lab activities in these courses, where students learn through prac-

tices and projects, and the effectiveness of engaging novice students in these

rich web-development activities.

To better support novice users’ lab activities in web programming courses at

the secondary level, this chapter identifies rooms to introduce collaboration. We

investigate how teachers structure these kinds of lab activities and what element

of the activities we can reconstruct to involve students collaboration, based on

their reported success (or lack thereof) of these approaches from their experi-

ence. Specifically, we asked high school and middle school teachers about what

tasks they do with their students and what instructional approaches they adopt

for these tasks, in their introductory web development courses. Understand-

ing how these courses are taught in middle or high school context will give us

an opportunity to broaden our understanding on challenges and potentials in

instruction for novice students.

4.2 Related Work

Existing research has explored several challenges in introducing collaboration

in learning environments. Janssen et al. [61] viewed novice users’ immaturity,

as an individual factor, in coordinating group members as one of the most sig-

nificant challenges. Their observation showed that working collaboratively may

impose additional cognitive costs for novice students. This is because collabora-

tion involves metacognitive activities that regulate their task performance, such

33

www.manaraa.com

as planning the whole task, monitoring progress, and evaluating the task [41] in

which novice users are generally underdeveloped. Another line of work argued

that there is social factors including competition in education system and rela-

tionship issues [12], which might demotivate students collaboration. Further-

more, cultural factors were reported including teachers’ potential reluctance to

bring collaboration in their classrooms where they consider it as an operating

cost [100].

To extend the discussion, we explore instructional factors that make it diffi-

cult to introduce collaboration in web programming courses. As our research

shows, web programming involves diverse tasks, including analysis, design,

and deployment related activities, but little is known about how to use collab-

oration as a teaching strategy to support these relevant tasks in lab activities

in those courses. We seek to address this gap by creating a taxonomy of these

tasks, along with what instructional approaches have been used to introduce

then, and how students were guided to work together by our sample of teach-

ers.

4.3 Methodology

4.3.1 Participants

We recruited 11 (five female and six male) voluntary participants for data collec-

tion through snowball sampling. They were sampled with common criteria of

teaching experience in web development courses and 3 or more years of teach-

ing experience in CS. They had experience of teaching different age groups of

34

www.manaraa.com

students in different settings. The participants with pseudonyms and the char-

acteristics of their teaching context are shown in Table 4.1.

4.3.2 Data Collection

We conducted semi-structured individual interviews. The purpose of these in-

terviews was to understand how participants design and deliver lab activities in

teaching web development courses. The interviews followed a prepared proto-

col to get key information common to all participants, but as a semi-structured

interview, it also allowed us to actively ask unscripted questions to be informed

about further details or other relevant issues. The questions covered topics of

curriculum, technology supports, and the class activity process. Example ques-

tions for the topics are shown in Table 4.2. Seven participants joined the inter-

view in-person, while four did remotely using video conferencing software over

the Internet. The interviews were approximately 40 minutes in length.

Seven participants agreed to share any teaching materials (e.g., curriculum,

exercises, etc.) they used along with examples of project outcomes of their stu-

dents. These supplemental materials assisted us to better understand the inter-

view data by providing information on what’s been done in student activities.

4.3.3 Data Analysis

The interview recordings were fully transcribed and analyzed. The analysis

started with the first step of the grounded theory approach, which is open cod-

ing [116]. Open coding, as an independent analytical method, has also been

35

www.manaraa.com

Table 4.1: Interview participants for exploratory study

No.
Pseudonym

(Gender)
Teaching Environment

Experience

in Years
Course Subject

Supplemental

Materials

1
Ann

(female)
Public high school 5 Web development N/A

2
Bob

(male)
Private high school 15 Software engineering

Curriculum,

student

exercises

3
Carter

(male)

Public high school with

software engineering con-

centration

4 Software engineering
Student

projects

4
Dana

(female)
Public high school 7 Mathematics N/A

5
Eric

(male)
Public high school 3 Web development N/A

6
Floyd

(male)

Public high school with

software engineering con-

centration

14 Web development

Curriculum,

student

projects

7
Gina

(female)

High school level after-

school program, commu-

nity college

3 Web development

Curriculum,

student

projects

8
Helen

(female)

Public middle school, mid-

dle school level club activi-

ties

4 Infographics
Student

projects

9
Irene

(female)
Public high school

Did not

reveal
Web design

Student

projects

10
Jay

(male)

High school level after-

school program
6 Web development N/A

11
Ken

(male)
Private high school 12 Web development N/A

36

www.manaraa.com

Table 4.2: Examples of interview questions per topic for teachers

Topic Example Question

Curriculum

“What kind of curriculum do you use for teaching web devel-

opment?”

“What are the high-level learning goals for the curriculum?”

Class Activities
“What kind of activities do you have your students conduct?”

“Could you explain the students’ task process in that activity?”

Technology Support
“What tools do you have your students use?”

“What materials or starter code do you provide?”

known to be useful in extracting concepts and ideas from the data, even with-

out the complete process of axial coding and selective coding of grounded the-

ory approach [82, 89]. During open coding on the interview data, references on

noteworthy phenomena in the data are iteratively coded with emergent names

that concisely describe the phenomena. The phenomena of interest for this re-

search included tasks that students performed in lab activities and strategies

used by teachers to support students in those tasks. After extraction of the con-

cepts through open coding, we tried to identify patterns of strategies.

4.4 Theoretical Background

Cognitive load theory [85] and cognitive apprenticeship [32] were used to gen-

erate systematic perspectives on the emerging codes and their categories. Use

of these two theories was theoretically justified because they have common

premise that learning can be explained by task complexity and cognitive load,

which have been indicated as two factors contributing to difficulties in learning

[92]. We used these two theories in our coding scheme to theoretically under-

37

www.manaraa.com

stand how learning is supported across the various instructional designs ap-

plied by teachers in our sample.

4.4.1 Cognitive Load Theory

From a cognitive science perspectives, learning occurs when new information

being processed through working memory becomes part of existing patterns of

memory structure (schema) in long-term memory [85]. This process is generally

called schema acquisition. Cognitive load theory [64] states that learning out-

comes of a learner can be maximized when the new information gives her the

adequate level of cognitive load, which is high enough to fully activate schema

acquisition and also low enough for schema acquisition to happen. From this

point of view, controlling this variable through instructional design is the key to

effective learning [64]. Studies have shown that this can impact the effectiveness

of learning [24].

Research in cognitive load theory has explained, at a more concrete level,

how instructional designs help a learner’s knowledge acquisition. Caspersen

and Bennedsen [22] provide an overview of the four effects of instructional de-

sign; worked examples effect, example completion effect, variability effect, and

expertise-reversal and guidance-fading effect. Here, we focus on the first three

effects as they are most directly intended for novice learners. Table 4.3 shows

how these instructional designs were used in our coding scheme.

38

www.manaraa.com

Table 4.3: Instructional designs according to cognitive load theory

Instructional

Design
Definition

Example of use in web develop-

ment context

Worked

Example [98]

Learning from teacher’s demonstra-

tion of example of given working so-

lution

Students analyzing and studying

the code of existing websites

Example

Completion

[122]

Learning through modifying and ex-

tending given working solution

Students completing or customizing

template HTML and CSS code that

is tailored for specific lessons

Variability

[88]

Learning through comparing and

contrasting several variations of

worked example

Students comparing similar HTML

elements with different parameters

of box model in CSS

4.4.2 Cognitive Apprenticeship

The theory of cognitive apprenticeship says that skills or knowledge acquisition

happens when the learner (novice) intentionally uses it through being able to see

the teacher (expert)’s processes of the task [32, 91]. This learning theory draws

attention to tacit steps in performing a task, which novices often fail to observe

because those steps are not very visible in complex tasks [32].

According to Collins et al. [32, 33], cognitive apprenticeship has four aspects

of learning, or expertise transfer; modelling, scaffolding, fading, and coaching.

Modeling aspect means that knowledge transfer takes place when the expert

directly shows the novice how to perform tasks to set the “model case” of task

processes that the novice can learn from. Scaffolding means partially carried-

out task by the expert that is given to the novice to support their work. Fad-

ing is gradual removal of the expert’s support, so that the novice can become

eventually more responsible for the task. In coaching, the expert supervises the

39

www.manaraa.com

Table 4.4: Instructional designs according to cognitive apprenticeship

Instructional

Design
Definition

Example of use in web develop-

ment context

Modeling

[33]

Learning from direct observation of

how experts perform a task

Teacher demonstrating how to up-

load website resources to an FTP

(File Transfer Protocol) server

Scaffolding

[33]

Learning from performing a task

where the task was partially carried-

out by an expert to reduce the com-

plexity of it

Teacher giving her students a semi-

automated shell script for setting up

the web server as scaffolding

Coaching

[33]

Learning from performing a task

where an expert supervises the pro-

cess and gives meta-level help, such

as feedback, hints, encouragement,

and additional challenges

Teacher giving her students free-

form projects with few requirements

and constraints with rather high

level feedback

overall process of the task by giving meta-level help, such as feedback, hints,

encouragement, and additional challenges.

Collins et al. [32] suggested that there exists interplay among those four

aspects of cognitive apprenticeship in knowledge transfer, which implies that

these concepts are not mutually exclusive. However, from an instructional de-

sign perspective, a teacher might strategically and selectively emphasize spe-

cific aspects of them in designing her instruction. Table 4.4 summarizes how

these instructional designs were used in our coding scheme.

40

www.manaraa.com

4.5 Results

4.5.1 Task Types

From the participants’ responses, six general task types emerged; analysis, de-

sign, implementation, code sharing, deployment, and review. The definition of

these tasks and including examples from the data for each task type is shown in

Table 4.5.

4.5.2 Instructional Designs Interacting with Task Types

Six of the instructional designs outlined in the theoretical framework were iden-

tified to be employed by the participants to support students’ tasks for lab ac-

tivities; worked example, example completion, and variability in cognitive load

theory and modelling, scaffolding, and coaching in cognitive apprenticeship.

Based on their self-reported success by the participants, we constructed the in-

structional design and web programming task matrix (Table 4.6). As qualitative

research, this work calls readers for analytical generalization of characteristics

of the emergent findings, instead of statistical generalization of frequency of

references or count of features visualized [82].

In Table 4.6, the two theoretical frameworks that we introduced are verti-

cally arranged. Cognitive load theory sees learning as acquiring schema and

processing information to fit in the schema as conceptual knowledge [79]. On

the other hand, cognitive apprenticeship regards learning as knowing how to do

things, cognitively or physically, as procedural knowledge [79]. The task types

41

www.manaraa.com

Table 4.5: Task types in web programming courses identified

Task Type Definition Example Reference

Analysis

Tasks directly related to studying existing

artifacts as given materials to understand

the technical details or identify problems

“They have already done X-Ray Goggles.

They have looked at a bunch of websites.

And we have talked about design. What’s

good and what’s bad.”

Design

Tasks directly related to studying given

materials to understand the technical de-

tails or identify problems

“I give them grid paper. They make a paper

wireframe sort of thing. When they do that,

I let them first try out. Draw whatever you

want.”

Implementation
Tasks directly related to building digital ar-

tifacts with program code

“They would use a cloud editor to change

parameters and queries to have Twitter, In-

stagram, and SoundCloud like web inter-

faces.”

Code Sharing

Tasks directly related to make one’s pro-

gram code available to others or to use

other’s code

“They would send code by email or use

Google Docs, which is not super compati-

ble. That was a source of frustration. Or,

copying from the screen and typing.”

Deployment

Tasks directly related to make digital arti-

facts available and accessible to others on

the web

“Students would really love to have a

hosted website. For one semester, I did,

like I set up a classroom server and I had

the students, like taught the advanced stu-

dents, how to host the sites.”

Review

Tasks directly related to evaluate digital ar-

tifacts and building process after comple-

tion of building

“I also let them have reflections at the end,

to make sure that they were involved with

the process and usually if there has been

gross imbalance of work.”

42

www.manaraa.com

Table 4.6: Reported success of instructional designs per task type

Base Theory Instructional Design

Task Type

Analysis Design Implementation Code Sharing Deployment Review

Cognitive Load

Theory

Worked Example

Example

Completion

Variability

Cognitive

Apprenticeship

Modeling

Scaffolding

Coaching

� Instructional design reported as successful

� Instructional design reported as unsuccessful

� Instructional design reported as mixed success

� Unidentified instructional designs

are horizontally arranged in general task order of development cycle (although

it’s an iterative process, not a linear sequence). Given that, the diagonal pattern

of the shaded cells, from top-left to bottom-right, suggests that the participants

wanted their students to acquire schema to understand concepts in the earlier

stage of lab activities and pick up skills to build artifacts later.

The sparseness of the matrix suggests conformity in selection of instructional

approaches per task type across the participants; white cells in a vertical column

might suggest the participants had a tendency to use common approaches to

the specific task. In contrast, a column with more cells colored might imply that

the task allowed the participants to try more diverse instructional design ap-

proaches. This holds true when we consider the characteristics of each task and

the nature of knowledge the task is involved with. This pattern again resonates

with the theoretical types of knowledge aforementioned [79]. Another notable

pattern in the matrix is that implementation was the only task type where both

43

www.manaraa.com

theoretical approaches were identified; in particular, example completion was

used to support students to learn programming language syntax.

The participants largely used cognitive load theory approaches to support

the analysis task, while using cognitive apprenticeship approaches to support

more diverse task types to build artifacts. Another notable feature in the visual

patterns is that implementation was the only task type where both theoretical

approaches were identified; example completion was used to support students

to learn programming language syntax.

4.5.3 Collaborative Approaches Interacting with Task Types

In addition to the instructional designs guided by the theoretical framework,

collaboration between students emerged as a key aspect of the participants’ in-

structional strategy in the observation. The participants reported that they tried

three types of collaborative approaches; peer instruction, cooperation, and dis-

cussion. The definitions and examples in web programming context of the three

emergent collaborative approaches are shown in Table 4.7.

We also tried to assess the relative success of collaborative approaches per

each task to find potential opportunities for better support. These collabora-

tive approaches, as instructional designs did, emerged interacting with task

types, also showing the general conformity of selection in the collaborative ap-

proaches and task type matrix (Table 4.8). To get a systematic perspective on

the results and identify patterns, one intuitive way to arrange the three collab-

orative approaches is by the levels of intrinsic structuredness of the method,

where peer instruction imposes the most structured way of collaboration and

44

www.manaraa.com

Table 4.7: Collaborative approaches identified

Collaborative

Approaches
Definition

Example of use

in web development context

Peer Instruction [34]

Engaging students in understanding the core

concepts presented, and then, explaining

them to their fellow students

“I tried pairing them up like strong stu-

dents with weaker students, so they help

them along in coding.”

Cooperation [61]

Dividing the labor required among fellow

students to solve problems or complete tasks

together

“I say to them you can work up to a group

of 6.”

Discussion [67]

Encouraging verbal interactions among fel-

low students to help engaging in a lesson and

learn academic content by exchanging ideas

“I ask a question, ‘how does it work?’ They

have a discussion about it. I give them the

notes about, on a basic level what are func-

tions and events in JavaScript.”

discussion allows free-form exchange of information for collaboration. Given

that, the inverted U-shape pattern across the development cycle suggests the

tendency that teachers take more structured approaches to hands-on stages of

the development process and allow more discretion for analytic steps, in terms

of the way of collaboration (Table 4.8). One notable feature of the visual patterns

was that design task did not often or successfully involve structured collabora-

tive approaches. One possible explanation could be that novice students find

the design task hard because it usually includes high-level thinking and sets the

foundation for the remaining tasks, while it also should allow high degrees of

freedom for them to be creative at the same time. Nonetheless, this seems a

crucial missed opportunity for introducing more and better structured collabo-

rative activities.

From the patterns of instructional designs and collaborative approaches

identified along with their reported success, we examined the potential to in-

45

www.manaraa.com

Table 4.8: Reported success of collaborative approaches per task type

Collaborative

Approach

Task Type

Analysis Design Implementation Code Sharing Deployment Review

Peer Instruction

Cooperation

Discussion

� Collaborative approach reported as successful

� Collaborative approach reported as unsuccessful

� Collaborative approach reported as mixed success

� Unidentified collaborative approach for the task

troduce collaborative approaches that are supported by instructional designs

per task. A description of these results including relevant interview excerpts

are presented below.

4.5.4 How to Support Discussion for Analysis and Review

Tasks

The participants confidently stated their successful teaching experiences in sup-

porting analysis and review tasks. They had their students discuss in perform-

ing those tasks while providing instructional designs of worked examples, vari-

ability, and coaching as the additional support. This piece of findings tips at the

possibility of synergic effects from the adequate combination of collaborative

learning and instructional designs. For analysis task, it seems that worked ex-

amples design facilitated students communication through setting up the com-

mon ground [56, 28] and variability design help students contrasting different

consequences of the dynamically changing common ground in the discussion.

46

www.manaraa.com

Below, Ann talks about students discussion with instructional design support of

worked examples design for analysis task and Carter explains how his students

discussion works with variability design for analysis task.

Ann: “We look at evaluating websites, then we actually look at

HTML and CSS [of them]. Some of the kids get to Javascript but

that’s like an extension. Then the websites are graded on both web

development and the content. I printed out their favorite websites

like the ESPN home page. A lot of boys really like sports. I found

like a fashion site because a lot of girls like fashion, not to stereo-

type (laughs). That is what they asked for. They drew boxes around

the different parts and we labelled the tags. We did things like that,

marking things up. Even though they really don’t need to know how

to build it from scratch, we started there, so that they understood the

fundamentals.”

Carter: “They basically looked at the code, and answered the ques-

tions about, ‘How do you think this piece works?’, or ‘What do

you think it does?’ I got about 30 kids who responded which is

pretty good for my class They copy and paste the function that alerts

and changes the background color. Copy and paste the line which

changes the background color to green. They just hunt through and

are like ‘Oh! This must be it, background color, green!’ Then, I give

them a different[, but similar] code. ‘How does it work?”’

For review task, coaching approach of cognitive apprenticeship was found

to be successful. Review task seems to work well with discussion and coaching

47

www.manaraa.com

design because it requires the ability to evaluate an object with relevant criteria,

which is one of the representative metacognitive skills [41]. As Irene reported

below, she uses the term ‘scaffold’ to explain the strategic assistance she pro-

vided her students, but it actually looks closer to coaching because she gives

meta-level assistance, rather than scaffolding in cognitive apprenticeship.

Irene: “They sit in their table groups, and they have worksheets of

a particular format on how to give feedback. And then they look at

everyone else in the table group and fill it out just for them. And

then they hand it back. If there is a group of four, everyone will get

three forms with the feedback. And then I have to do a few lessons

on how to incorporate feedback. They are also not good at giving

feedback, so they are not always getting meaningful feedback. So, I

do try to scaffold so that they get some meaningful feedback.”

4.5.5 What Works Well or Not in Supporting Implementation

Task

The participants reported generally mixed success on implementation task. Cer-

tain collaborative approaches and instructional designs are theoretically known

to be effective, which led the participants to make several attempts at imple-

menting those approaches, but caveats and barriers were still identified in prac-

tice.

First, Example completion design and peer instruction were identified to

have successfully supported this task. We couldn’t find the direct interaction

48

www.manaraa.com

between the two methods in our dataset, but peer instruction in implementa-

tion task with example completion design looks a promising combination. Bob

explained how he guided his students to build on top of a given working so-

lution (a layout of an app) by modifying and amplifying it, which is example

completion design. Eric stated that peer instruction was generally a successful

collaborative approach in his classroom.

Bob: “You have fresh blank Ruby file in Cloud9. We put in the Sina-

tra framework in there. But I don’t want to do [teach how to use the

module imported] that in every class. So, we have standard gems

already installed and we have a basic layout. We have a get request

and post request set up.”

Eric: “I tried pairing them up like strong students with weaker stu-

dents, so they help them along. I tried giving strong students their

own projects that they have to teach [the partners] how to do.”

Second, scaffolding design reported mixed success in supporting implemen-

tation task. We made comparisons between the attempts that ended up with

mixed success to find out any potential factor that generates different conse-

quences. Gina came up with two contrasting results in supporting implementa-

tion task with scaffolding design, even in the same course.

Gina: “We had these starter code where we tried to figure out the

OAuth and have the code for that just like ‘done’, and then they

would download the zip file and upload it to their server. Each of

them had a little folder on a GoDaddy [a web server]. And then, they

49

www.manaraa.com

would use a cloud editor to change parameters and queries to have

Twitter, Instagram, and SoundCloud, like web interfaces [APIs]. We

kind of styled towards them, they started changing out the CSS, col-

ors, and stuff like that. That was probably one of the successful

ones.”

Gina: “One thing that no one’s got was data binding [of JavaScript

template engine]. We used Handlebars templates, where you could

see what the data parameter you received was. And there would be

like div tags [for the output of the data parameter]. They kind of

understood the data somehow went in there, but the dynamic gen-

eration, like dynamic rendering of HTML, I don’t think really ever

took hold. I bet it could take hold, but I just haven’t figured it out

how to.”

In the two anecdotes, Gina provided partially carried-out code of which her

students were able to build on top. Even though OAuth and RESTful APIs

(Application Programming Interface through Representational State Transfer)

are much harder topics than the dynamic rendering of HTML, she reported her

scaffolding approach was successful for the former rather than the latter. We

suppose that this mixed results stemmed from the mismatch between the learn-

ing goal, the type of knowledge to teach, and the instructional design. What

makes scaffolding effective is hiding the complicated part of the task from stu-

dents, while still letting them learn in performing the other part of it, especially,

taking advantage from the partially carried-out part [33]. If the learning goal

is to understand how a system works, as in the second anecdote of Gina, scaf-

folding doesn’t seem to help. In addition, the type of knowledge she wanted to

50

www.manaraa.com

teach looks conceptual rather than procedural in this case. Thus, it is advisable

that teachers should clarify the learning goals and the types of knowledge to

teach when using scaffolding design to support implementation task.

Third, coaching design also reported mixed success. We could also make

comparison between cases reporting on coaching design with different conse-

quences. Below, Ann illustrated the successful meta-level support she provided

in a form of checklist. Floyd, on the other hand, described unsuccessful example

of using coaching design focusing on feedback support.

Ann: “It was just [building] a static website. Then they had the

checklist requirements. There was an HTML checklist and CSS

checklist. Things like ‘it has to include a video’, ‘it has to include

an ordered list’, things like that. So, they used the checklist and they

are evaluated on the rubric. So, like ‘how readable is the website’,

‘how well designed it’, etc.”

Floyd: “As I was introducing CSS to them, I think that the syntax

itself was an order of complexity that was beyond the HTML. They

never get the hang of the idea of getting braces and semicolons to

define rules for different tags. The process would be they would type

something in, and then they would stare at it, they didn’t know what

to do next, they would raise their hand, and then the teacher come

over and say ‘Oh, you need a semicolon there’ and ‘Okay’. They

would type something in, and then it wouldn’t work, they would

raise their hand, and teacher would come over and say ‘Oh, you

need a brace over there.’ That was kind of tedious.”

51

www.manaraa.com

Both responses described meta-level support, however, the latter wasn’t a

successful coaching design. We suppose that this issue stemmed from the cen-

trality of the information given as meta-level help; coaching is giving meta-level

support, but not giving central information as meta-level support. In Floyd’s

example, CSS syntax is rather crucial for the task. Thus, it is advisable that

teachers should prioritize better structured instructional design in giving in-

formation that is central to the task. Provided peer instruction was identified

as successful collaborative approach for implementation task, another possible

suggestion is that coaching design that involves peer instruction where fellow

students exchange meta-level support, such as hints or ongoing feedback.

Finally, Carter commented on students’ social relationships and the school’s

contextual factors as potential causes for the mixed success of cooperation in

supporting implementation task.

Carter: “I don’t really do group work because of the nature of my

school. There is attendance issues, the kids who just drop-off, there

are kids who no one wants to work with because they have emo-

tional or behavioral issues. Forcing that group dynamics upon them

can lead to disaster of classroom engagement and culture.”

4.5.6 What Makes It Hard to Teach Design, Code Sharing, and

Deployment Tasks

The participants stated that they have tried several different approaches without

discovering satisfying solutions in design, code sharing, and deployment tasks,

52

www.manaraa.com

even though a few approaches were found to be more effective than others.

These tasks seem to have more room for improvement as well as significant

potential for collaborative learning and instructional designs. In this section,

we look into the challenges identified in supporting design, code sharing, and

development tasks.

Design task seriously lacks structured support, in terms of both collabora-

tive approaches and instructional designs. Floyd shared with us his experience

where he wanted his students to freely design on paper before they started cod-

ing, but his coaching approach to give them flexibility was not found to be ef-

fective for novice students.

Floyd: “So, anytime I have them draw something on the paper, then,

put it on the screen, it’s a little bit of an argument. They really just

want to put something very quickly on the paper to appease me, and

then start playing on the computer to try to create it. I see the value

in design, but it’s hard to get the design in the way something get

out to graphically on a piece of paper. That’s been hard to motivate

them to see the value of that.”

Code sharing and deployment tasks require further technology supports.

Code sharing, by its nature, has two or more peers working together, which

implies further potentials for collaborative approaches. Peer instruction was

identified as a rare successful approach for code sharing where sharer and sha-

ree learn from each other. Ann showed that code sharing with coaching ap-

proach through peer instruction was successful, given that the tool her students

used supported code sharing feature embedded. Also, Carter gave an exam-

ple showing an unsuccessful modelling approach to code sharing, where the

53

www.manaraa.com

tool he gave his students was too hard to use for them. Similarly, deployment

requires further tool supports in Gina’s anecdote since novice students didn’t

fully understand web architecture in having the artifacts they built hosted on a

web server.

Ann: “Well, Students would really love to have a hosted website.

For one semester, I did, like I set up a classroom server and I had

the students, like taught the advanced students how to host the sites.

They did it for everyone else. Everyone linked their site to the master

site and I taught these students how to... I did not do that after that

semester. Just because it took so much of the class time. And the

majority of the students weren’t able to really get anything out of it.”

Carter: “This year, I did it [code sharing] using version control. So,

our kids had to clone from GitHub and had to push back. It just

drives them nuts. I have recorded videos on how to do it, I have a

poster in every classroom. I have helper students who know how to

do it, but still, you know, the syntax [command] is a huge struggle. I

would say with the HTML they did pretty decent.”

Gina: “We used for a while this tool called ‘ShiftEdit’. It basically al-

low you to upload files and edit them. I had to first buy server space

on GoDaddy, web client. And then, I made everyone register for

ShiftEdit account, and then I gave them credential information for

GoDaddy to connect their ShiftEdit to that, for every single student.

This step takes forever. They had to just follow this tutorial.”

54

www.manaraa.com

4.6 Discussion

We formulated three propositions on instructional approaches to better support

collaborative lab activities in web development courses based on the findings

presented above.

4.6.1 Align Knowledge Types, Instructional Designs, and Task

Types.

We derived the proposition that teachers should be careful about aligning. One

rationale is that this will help avoiding the mismatch between types of knowl-

edge to teach, collaboration approaches, and instructional designs to use. The

unsuccessful anecdote of Gina in section 4.5.5 showed examples of the mis-

match. In this case, she took scaffolding approach in teaching conceptual knowl-

edge of how JavaScript template engine works. Even though her students were

able to make the module work, Gina’s excerpt implies that it wasn’t enough

for the intended teaching goal. This resonates with literature on the relation-

ship between conceptual knowledge and procedural knowledge. Glaser [50]

explains conceptual knowledge helps effective use of procedural knowledge.

This proposition suggests expanding the literature to embrace that instructional

designs should match the types of knowledge to teach, according to the learning

goals and the characteristics of tasks.

55

www.manaraa.com

4.6.2 Have Concrete Plans for a Certain Task and How Instruc-

tional Designs or Collaboration Would Help.

The unsuccessful approaches called for more structured designs. The partici-

pants responded they have tried several methods, but they were largely unsuc-

cessful. One of the common challenges observed was that their guidance was

extremely unstructured. Several collaborative approaches, for example, were

found in a form that “do this task together” or “discuss this within your group”.

Stahl et al. [113] stated that collaborative learning must be designed in detail,

so that the design is coupled with the analysis of the meaning constructed dur-

ing the task. This proposition suggests task-by-task analysis that clarifies what

learning goal you have, what the target students would find difficult during the

task, and how collaborative approaches or instructional designs would support

them to perform the task.

4.6.3 Teach and Support End-to-End Collaborative Workflows.

Although collaboration was identified to be a common approach with various

forms in the cases we observed, there was no end-to-end collaborative work-

flow that carried through each of the steps. This kind of collaboration, with

well-defined roles, responsibilities, and processes for division and integration of

work, is a core aspect of most professional software engineering contexts. Floyd

stated that he wanted to teach collaborative programming in a better structured

and pipelined way as a whole procedure, while emphasizing how difficult this

is in practice.

56

www.manaraa.com

Floyd: “I think having someone be able to break the problem down

into functional sections, then distribute it to have the sub-problem

solved, and put it back together, it’s just something they struggle

at that level. One project that we did at the freshman level, it’s in

Python. They were trying to make the alphabets and I said to them,

‘you can work up to a group of 6’. Everyone who can, they divide

up the letters. I found that one student do A through F, and then

G through J or whatever, and then, the lesson actually ended up be-

ing an example of not to do. It ended up with one person does A

through F, and then the person who’s supposed to pick up G got

confused. The one with A through F is done, and then they think

it’s all just gonna fit together. And then, nobody was actually able

to make somebody else’s code work on theirs because they all put

it in the different sizes and they can’t put it on the screen. The one

major collaborative project that I did with my freshman last year was

more of introduction to what the problems are. I tried to explain it

to them beforehand like what’s going to go wrong, but they’re really

not interested in to learn and see it go wrong, so it’s an interesting

lesson, which I enjoyed doing, but it more accentuates the problems

than solves them.”

Several different kinds of tools, including bug trackers, task assignment

tools, and version control systems, are widely used to support the pipelined

collaboration process in professional software engineering contexts. However,

teaching young students how to use them is another big challenge [59]. By de-

signing appropriate tools that guide students through end-to-end collaborative

workflow, this sort of challenge that Floyd was reporting might be alleviated.

57

www.manaraa.com

Also, instruction on the collaboration workflow using those tools might reduce

the gap between collaborative processes in education environment and the field

of software engineering.

This research has a few limitations. First, our research design did not take

factors outside of the instructional designs employed into account. In partic-

ular, there may have been external factors that could help or limit strategic

approaches to learning. These potential external factors might include school

policy on flexibility of curriculum, management costs, availability of tools and

instructional materials, and students’ prior skill levels. Another limitation is this

research used self-reported measures of effectiveness of instruction by teachers,

not an objective assessment of the instruction or the evaluation on students’

learning achievement.

4.7 Summary

Based on a semi-structured interview study with middle and high school web

development teachers, we explored how these teachers employed instructional

design approaches and collaborative approaches to support students’ lab activ-

ities in web programming, and the relative success of these approaches. From

these findings, we derived and discussed some potential strategies to improve

instructions.

58

www.manaraa.com

CHAPTER 5

STUDY 3: OBSERVATION OF HOW NOVICE STUDENTS LEARN A

SCAFFOLDED COLLABORATIVE WORKFLOW

5.1 Motivation

In the previous chapter, the qualitative study identified the challenges in sup-

porting students collaboration in web programming courses in secondary level

CS classrooms: 1) we discovered misalignment between the knowledge types

to teach, the instruction designs to employ, and the task types students are as-

signed with; 2) the plans for teaching tasks didn’t have concrete plans for collab-

oration; and 3) there was a lack of support for end-to-end workflow dedicated

for collaboration in web programming activities. As the discussion section of

the previous chapter suggested, these challenges commonly call for more con-

crete plans on how to have students collaborate on what tasks in each stage

of web programming activities. Thus, we propose a CSCL approach including

lesson plans and a supporting software tool to alleviate these issues. Also, we

deploy the proposed lesson plans and the software in the actual education set-

tings to observe how the novel approach turns out in real world contexts and

how students adjust to the proposed approach to collaborative web program-

ming.

There are several different ways available to introduce collaborative pro-

gramming in CS classrooms, but even the most widely used platforms for

younger students’ collaborative programming, such as Scratch, do not effec-

tively support the complex and dynamic aspects of collaborative programming

projects observed the real world settings; specifically, they don’t always reflect

59

www.manaraa.com

or aren’t applicable to the common tasks in the development cycle that we iden-

tified. One widely accepted tool for collaborative programming is using ver-

sion control systems (VCS). A VCS is a software tool to manage changes of

program code over time [8]. Using VCS has become a crucial skill to manage

one’s own codebase, share your contributions one others, integrate multiple set

changes, and to make this traceable and reversible in a collaborative situation.

Despite their significance, teaching students how to use VCS has been left out

of the standard CS curriculum up until very recently [8, 7, 6]. As a result, stu-

dents are not introduced to how collaborative software projects are organized

in real-world settings, and do not appreciate the significance of collaboration.

Moreover, the absence of tools and protocols for collaborative project manage-

ment may result in reduced work efficiency and unfair contribution for student

projects, increased managerial costs for teachers to guide the students’ work

process or handle conflicts between students, and delayed learning in advanced

courses that could build on top of effective collaboration. Existing approaches

to collaborative projects without the structured guidance of VCS, accordingly,

might be missing the elements of professional programming practice, such as

working with teams and solving collaborative challenges by sharing and merg-

ing code through VCS. Therefore, this chapter focuses on designing and deploy-

ing curriculum and a supporting software to help students at pre-collegiate lev-

els learn how to effectively work with each other using standard collaborative

programming techniques.

This chapter first reviews related work on how collaborative workflows have

been introduced in CS education. To expand the discussion to younger age

groups of students and project-based web programming courses, we propose

lesson plans where students go through genuine process of collaborative work-

60

www.manaraa.com

flow using VCS. We introduce GLIDE, a software tool built around the proposed

lesson plans, on which students can collaboratively build websites according to

the feature branch workflow of Git. And then, we report on the deployment

of the lesson plans and GLIDE in an actual CS classroom at a high school. In

sum, we provide insights into how to better teach collaborative programming

through our proposed approach and an empirical study as an evaluation of the

proposed approach.

5.2 Related Work

Several research projects have used VCS as a courseware to manage, distribute,

and submit learning materials and students deliverables [19, 68]. For instance,

Lawrance et al. [68] suggested a structured model of using Git in courses for

CS majors and also CS1 courses for non-CS engineering majors. This included

introducing Git command line tools and configurations. In the resulting study,

some of the CS majors who participated reported that they were able to get jobs

based on learning Git.

Other projects have introduced VCS as an explicit learning goal, and en-

couraged students to use it for collaborative development within the course

(and hopefully even after the course) [66, 54]. For example, Laadan et al. [66]

employed Git in an operating systems course for undergraduate and graduate

students. They introduced the benefits of VCS as courseware, and the use of

version control in software development processes. The students participated

in group projects about kernel programming using Git, allowing the instructor

to review the code contributed in group projects. Students enjoyed communi-

61

www.manaraa.com

cating with the instructor through comments, suggesting the benefit of collabo-

ration using VCS in CS courses.

Our research builds on, but differentiates from, these prior works in several

ways. First, prior works commonly pointed out that the learning curve in us-

ing VCS, and the fear thereof, is one of the biggest challenges to introducing

it into the curriculum [59, 54, 97]. This issue is exacerbated for non-CS majors

who take CS courses and younger students because they are unlikely to have

sufficient background: for example, using the command shell prompt, under-

standing the terminology of VCS, and having a conceptual model of a commit

tree. Second, prior software tools were not designed to teach the process of col-

laborative workflow with proper scaffolding; focusing on learning sequences of

commands by rote memorization [20, 21, 68, 97], providing a graphical user in-

terface (GUI) to automate the entire process [123, 17, 54], or providing platforms

for unstructured collaboration, such as “remixing” [35]. Third, most prior work

focuses on the post-secondary level. By introducing collaboration tools and pro-

cesses early in high school, we can encourage pedagogical approaches based on

social learning and collaboration that can support students in further CS learn-

ing.

5.3 Proposed Approach and Research Questions

5.3.1 Educational Context

We chose to design lesson units to be taught in an introductory web program-

ming course offered at the secondary level. The target audience is novice

62

www.manaraa.com

students without sufficient background in systematic development process

in groups, but having a basic understanding in syntax of HTML, CSS, and

JavaScript. The basic web architecture, which usually requires background in

those three computer languages, makes good settings by nature encouraging

collaboration with contributors from each area. Also, existing research has

shown that web programming can be engaging and enjoyable to novice stu-

dents in introductory courses [80]. Considering the topic and the skill levels,

we targeted 12th graders in a high school who are taking a web programming

course. We distributed a call for participation in this research to over 50 teach-

ers at high schools in New York, NY. One teacher who has been teaching a web

programming course at a high school in Queens, NY for eleven years agreed to

participate. We planned an intervention including the lesson plans while con-

sulting the instructor of the course to get informed about the course organiza-

tion and students’ technical background. She gave us feedback on the feasibility

of each lesson (decision on whether her students would be able to follow each

lesson or not), the time required for practice, and general tips for class session

management.

5.3.2 Lesson Plans

In designing our lesson plans and supporting tools, and materials, we focused

on the following two learning goals. First, students should be able to collabora-

tively write programs using a Git workflow that supports structured collabora-

tion. Second, not only being able to write programs, students should be able to

understand the process of how collaborative software development should oc-

cur, rather than leaving the process management onto the scaffolding tools that

63

www.manaraa.com

abstract away the procedure or getting trained in a set of instructions that they

can mindlessly follow. These two goals target learning that better reflects col-

laborative programming process in professional contexts. Using Git, we chose

to teach the feature branch workflow. The feature branch workflow refers to a

pattern of software development wherein a group of developers use a shared

repository for a project and incrementally update it by pushing individual con-

tributions using VCS [7]. In the standard Git workflow, each developer clones

the original project repository (often called the upstream or the origin) into their

own local branch, which they can use as an active workspace. When she is ready

to contribute her changes (commits), she can push them to the origin, where a

VCS handles the interaction between the two separate codebases. Upon the

approval by the repository owner, the branch with updates is merged into the

master (default) branch of the repository. During this process, collaboration oc-

curs by reviewing and merging multiple branches from all the group members.

These explicit steps of the workflow as a collaborative model contribute to a

more maintainable codebase and more explainable codebase history. Figure 5.1

depicts the conceptual step-by-step procedure of the feature branch workflow.

The key concept we want to teach about the feature branch workflow is how

a group of developers can individually make progress on their own branches

and then integrate their code by merging their branches into master branch.

This doesn’t only have practical importance in collaborative programming, but

also conceptual significance that involves computational thinking, such as ab-

straction of a state of code (a snapshot) and a tree-like representation of changes

of dynamic entities. In addition, The feature branch workflow is a good ap-

proach for novices for three reasons. First, as a basic variation of central work-

flow [6], it is one of the simplest workflows for novices to understand that is

64

www.manaraa.com

Figure 5.1: A conceptual diagram of the feature branch workflow. The dia-
gram illustrates a new branch checked out (the curved arrow),
two new commits (the colored circles) made on the branch, and
the branch merged into master branch.)

known to work well with small sized groups. Second, this workflow is adequate

for novices because it tries to keep the representative branch of the project repos-

itory from broken code [7]. Lastly, the separation among the original project

repository on a remote server and a contributor’s workspace keeps the project

from potential errors compared to direct modification off the original project

repository.

Two important lessons to start with that will help the students perform

group projects following the proposed workflow is the basic terminology used

in Git workflow and the abstract model of Git operations (not Git commands) in

each step of the workflow; for example, what a repository means, what cloning

a repository means, and what happens when you clone a repository. Teaching

these two prerequisites is also relevant to the learning goal that students should

have deep enough understanding to engage in communication on the collab-

oration process using technical terms. Thus, this proposed approach exposes

65

www.manaraa.com

Table 5.1: Proposed Lesson Plans

No. Lesson Duration Description Materials

1

a. The motivation: why we need

Git?

b. The concept of repository

60 mins

a. Students share experience in manually managing versions us-

ing different filenames.

b. Students understand the difference between file folders and

repositories.

2

a. My GitHub account

b. My first GitHub repository

c. Repository is a folder being traced

30 mins

a. Students create their own GitHub account

b. Students create their own remote repository on GitHub

c. Students edit README.md file and get familiar with the file

system browser on GitHub

Web browser and

email address

3

a. Individual contribution

b. Remote repo and local repo

c. Master branch and feature branch

d. Commits as save points

60 mins

a. Students understand the abstract model of feature branch work-

flow.

b. Students understand the concepts and terminology covered.

c. Students discuss how Git works with peers in their own words.

4

a. Cloning on GLIDE

b. Branching on GLIDE

c. Coding on GLIDE

30 mins

a. Group leaders invite the members to the GitHub repository.

b. Students clone the team repository on GLIDE.

c. Students create their own branches in the cloned repository on

GLIDE.

d. Students create HTML files on the branch on GLIDE.

Web browser,

GitHub account,

and GLIDE

5

a. Putting them all together

b. Pushing feature branch

c. Merging branches

60 mins

a. Students understand push, pull request, and merge.

b. Students understand the concepts and terminology covered.

c. Students discuss how those Git operations work with peers in

their own words.

6
a. Pushing and Merging

b. Deploying the website
30 mins

a. Students push the branch on GLIDE.

b. Students resolve merge conflict on GitHub.

c. Students configures GitHub pages to serve their repository as a

website.

Web browser,

GitHub account,

and GLIDE

them to the terminology and the corresponding operations of Git for each step.

Table 5.1 summarizes the lesson plans reflecting the learning goals.

5.3.3 GLIDE

We built a software tool named GLIDE (Git-Learning Integrated Development

Environment) [73] to guide novice students using scaffolded user interface

based on the feature branch workflow. It is built to have all the features re-

66

www.manaraa.com

quired to support the lab activities in the lesson plans (Table 5.1) and a student

group project to build a static website as a classroom activity after the lessons.

GLIDE supports students in visualizing the workflow as they proceed

through each step of the standard workflow. Figure 5.1 illustrates the inter-

active navigation bar on the top position of GLIDE user interface. It is based on

a simple, static, and iterative 5-step cycle: clone, branch or checkout, code and

test, commit and push, and make a pull request. Each step (except for code and

test, which are not Git-related operations) represents one abstract Git operation

covered in the proposed lesson plans (Table 5.1).

Figure 5.2: Interactive navigation bar of GLIDE illustrating the scaffolded
feature branch workflow

GLIDE structures a group of students’ web programming process after

brainstorming, coordination, and design phases like this (Figure 5.2):

• The group leader creates a remote repository on a Git hosting service

provider, such as GitHub.

• The leader invites all the group members in the project repository to grant

them the access to the shared resources in the repository.

• Each student opens GLIDE on one’s own computer and clone the project

repository.

• Each student creates a branch to build a feature on; he writes HTML, CSS,

and/or JavaScript code and test it on the live preview window.

• Each student makes commits to confirm the changes and pushes the

branch.

67

www.manaraa.com

• Each student repeats this cycle until the work is complete and make a pull

request when it’s ready.

• The group members get together to review the code and merge the branch

into master branch on GitHub, upon the decision by the group or the

group leader.

This represents the scaffolded feature branch workflow where the novice

students can collaboratively perform website-building project even without

learning Unix shell command language or Git command line tools, such as “git

checkout -b my-branch” or “git push origin my-branch”, by using GLIDE.

We also wanted to make it easy for students to deploy their websites using

GitHub Pages [49]. We have found that young people are excited to share their

work online and to show their friends and family. However, students and teach-

ers find it hard to perform and support deployment given the complicated set

of requirements (buying a domain, setting DNS parameters, finding a hosting

provider, uploading content, etc.). GitHub Pages, are a built-in feature of the Git

hosting provider, where the static website resources can be served directly from

the remote Git repository. Another GitHub-related feature GLIDE employs is

making a pull request to notify the repository owner (the group leader) that a

branch has been pushed and ready to be merged. This feature took classroom

context into account where students might perform group projects as home-

work after having to wrap up their work within the limited lab session. In such

distributed settings, this pull request feature works as a means for communica-

tion.

Figure 5.3 shows a couple of screenshots of GLIDE user interface. GLIDE

was built with Django Rest Framework (Python 3), React (JavaScript), and

68

www.manaraa.com

GitHub API to interact with the remote repositories of a user.

Figure 5.3: Screenshots of GLIDE user interface

As the initial experience of integrating introductory web programming

courses at pre-collegiate levels with a collaborative Git workflow, we need to in-

vestigate how this approach turns out in an actual education settings. Thus, we

formulated research questions on the consequences and effects that the GLIDE

approach potentially brings about.

5.3.4 Research Questions

The proposed curriculum using GLIDE implements a novel approach to teach-

ing collaborative web programming with the guidance of structured process

based on Git workflow. Despite the significance of collaboration in CS educa-

tion context, little is known about the feasibility and the consequences of intro-

ducing collaborative workflow into secondary level CS classrooms. The results

from the interview study in the previous chapter showed that teachers acknowl-

edge the value of teaching standard process of collaboration and are motivated

to teach it, however, the existing curriculum has less focus on learning how to

collaborate. Furthermore, there were no well-known software tools to support

teaching and learning such a collaborative process. Along with these unfulfilled

69

www.manaraa.com

needs, collaboration using Git workflow has been left out of the secondary level

CS curriculum, while creating the perception that Git is too hard to teach or

learn at beginner levels. As we argue that our novel approach using GLIDE

make the implicit steps of collaborative workflow more visible and comprehen-

sible, we need to investigate the learning gains that the novice students take

from the proposed approach. Thus, this study raises the first research ques-

tion of what traceable or observable learning gains novice students can take from the

proposed approach to collaborative web programming.

The intended contribution of this dissertation work in the bigger picture ren-

ders the second research question on how the proposed approach contribute to

fostering a collaborative environment, in addition to learning in collaboration

skills. An active research topic in CS education research is how to deal with the

issues of unequal contribution in collaboration [14, 104, 105]. This implies that

collaborative learning in CS has attracted much attention from researchers and

educators, but the fairness of collaboration has been a practical barrier work-

ing against the implementation of collaborative environment. Aligned with our

general expectation that the proposed approach will guide students to fair and

explicit coordination as feature branch workflow organizes the group work, the

second research question asks how the proposed approach alleviates the unequal con-

tribution problem in collaboration, and in turn, contribute to fostering a collaborative

environment for CS education.

70

www.manaraa.com

5.4 Methodology

To answer the research questions, we conducted design-based research (DBR).

DBR in learning science refers to a research approach that designs a context to

generate new theories, artifacts, and educational practices that potentially serve

and affect learning and teaching in natural settings [11, 10]. Cobb et al. [30]

characterized this research methodology that it entails both “engineering” cer-

tain forms of learning and studying those forms of learning within the context

defined and designed to support them. This justifies the use of DBR in this re-

search where we designed lesson plans, built a supporting software tool, and

made intervention and observation in the actual classroom settings to imple-

ment the GLIDE approach.

5.4.1 Participants

27 12th grade students (24 male and 3 female; aged from 17 to 18) at a pub-

lic high school with a concentration on information technology in Queens, NY

participated in this study. They were all students in a Web Client Programming

course, which used a series of lab exercises to learn fundamental skills in HTML,

CSS, and JavaScript and group projects to build static websites. None of them

had experience in using Git, GitHub, or GLIDE before this intervention. The

instructor of the course announced the opportunity for voluntary participation

and all the course-takers agreed to participate with their parents’ consent.

71

www.manaraa.com

5.4.2 Procedure

We designed an observational field study to identify the learning outcomes and

contribution to fair collaboration in web programming in a real-world context.

As a DBR approach taking place in actual class sessions at a high school, the

main focus of observation is placed on how the proposed GLIDE approach turns

out in the real-world settings.

The 27 participants were randomly grouped into 7 teams (6 teams with 4

and 1 team with 3). To better engage the students in their creative work process,

the instructor themed the lab activities in the Web Client Programming course

as a group competition named “Shark Tank”, where the title of it was adopted

from a popular TV show. Each team was asked to come up with an idea for an

imaginary technology product and choose two of the other teams as web de-

sign agencies competing with each other in building a marketing website for

the product. Each team was tasked with two website-building projects (project

1 and 2 in a sequence) as a result of this matching process. The students were

told that one of each pair of competing teams that build the marketing web-

sites for the same team (7 in total) will be picked as the winners of the Shark

Tank project and they’ll get a bonus credit for their final course grades. The

participants were given 2 class sessions for planning and design for each project

where each session was 45 minutes in length. They completed each web pro-

gramming project over 10 sessions. Between the two projects (1 and 2), we used

six sessions to introduce the scaffolded feature branch workflow and GLIDE.

The students then used GLIDE and the feature branch workflow to collabora-

tively implement project 2. All of the students had built a static website earlier

in the course (project 0) to practice basic HTML, CSS, JavaScript skills. Figure

72

www.manaraa.com

5.4 illustrates the intervention schedule.

Figure 5.4: Procedure for GLIDE Intervention and Observation

5.4.3 Data Collection

We collected data from three types of data sources. First, to identify the learning

outcomes throughout the intervention, we audio-recorded the students discus-

sion in the lecture on the scaffolded feature branch workflow from each team

between project 1 and 2. This dataset was intended to give us insights on what

abstract models they built when they’re exposed to the novel approach to col-

laborative programming for the first time. In the students discussion data, we

had two focal points: they were told to explain the concepts on Git workflow

they learned in their own language as much as they can; they are encouraged to

ask questions within the peer group to clarify their understanding or learn from

peers on any topics under collaborative web programming with Git workflow.

Second, we collected the records for coordination and integration process

from each team for project 1 and 2. They had no guidelines to follow in integra-

tion for project 1, but were told to use the merge feature to integrate individual

73

www.manaraa.com

contribution following Git workflow in project 2. Considering that the GLIDE

approach is intended to guide the students to better structured collaboration,

this dataset addresses how the participants change their strategies and behav-

iors in performing the projects, in terms of fairness in collaboration process.

The main focus of this dataset is on how balanced the individual contribution is

when the group work is divided into individual chunks and incorporated into

the shared output as a whole.

Third, we conducted focus group interviews where the participants talk

about their overall project experience with or without GLIDE. The interview

conversation was recorded and transcribed for analysis. The purpose of the

focus group interviews was to get informed about the students’ learning expe-

rience. Interview questions included the students’ perceived value of learning

the collaborative workflow and performing a group project following it, and

the challenges and limitations of the proposed approach from students’ per-

spectives. Participation in focus groups was optional, but all the participants

volunteered to join the interviews with their group members who performed

the projects together. We had three interview sessions with two or three groups

each. Each session was approximately 25 minutes in length.

As an observational study, we also kept field notes to capture our obser-

vation besides the three types of qualitative datasets. One of the researchers

attended all the class sessions and took memo about notable phenomena dur-

ing the lab activities in the classroom. We don’t explicitly analyze the field notes

as a separate data source, but use the records of what we saw in the classroom

over the course of the students projects to provide the analysis results with more

context-relevant explanation.

74

www.manaraa.com

5.4.4 Data Analysis

The coordination records were collected as free form drawings and handwrit-

ing on paper, in the participants’ project plans for both project 1 and 2. The

integration records were collected in a form of online messenger logs for project

1, where the participants copied and pasted their code, sent the image files they

designed, compose text content for their websites as text messages. On the other

hand, for project 2 where the participants were using GLIDE, the integration

records were posted as Git commit history in the project repositories on GitHub.

The commit history had all the information on the type of contribution (design,

code, text content, project management), the amount of contribution, and how

the contribution was incorporated into the group’s shared resources. Note that

there is asymmetry between the datasets for the integration records for project

1 and 2 in terms of the accuracy and clarity; the integration records for project 1

included at least the cues to infer all the attributes that project 2 yielded, but the

amount of contribution is not easily traceable and the way of integration is not

visible directly from the dataset. We relied on the field notes to fill this gap with

more context-related explanation when needed.

The audio recordings from 21 in-class discussions (3 days 7 groups) and

three focus group interview sessions were transcribed and analyzed. We ex-

tracted and coded the transcript to get insights into the students’ learning

outcomes, students’ understanding or misunderstanding of the feature branch

workflow, their collaboration process, and overall impressions and motivations

of collaborative programming.

75

www.manaraa.com

5.5 Results

5.5.1 Learning Gains through GLIDE Approach

The participants successfully completed the class projects without (project 1)

and with GLIDE (project 2). The websites they built as the project outcomes

may be the most straightforward evidence that teaching high school seniors

how to properly collaborate following a commonly known Git workflow is fea-

sible through lab activities with reasonable levels of preparation and a support-

ing software tool. To better support the argument, we identified qualitative

or observational evidence that the participants picked up the knowledge and

skills, but not merely rote-followed the guidance of GLIDE without substan-

tial learning gains. This subsection first illustrates the findings that support the

argument on the participants’ learning through the GLIDE approach.

In the small group discussion among the participants, they were told to ex-

plain the feature branch workflow they learned in their own languages. The

transcripts showed that several advanced students were able to build the ac-

curate abstract model about collaboration process using Git workflow, based

on their solid understanding of the concepts taught in the lecture. The two ex-

amples of the participants’ interpretation on the feature branch workflow are

presented below.

(Example 1)

David: “Ted, you start off. Explain everything to us.”

Gio: “Save us.”

76

www.manaraa.com

Ted: “So, essentially, what we have now is, we have learned in the

past three days, we are learning how to use Git using GLIDE. From

that, we have a remote repository that has a master branch that

comes default. Since our remote repository is in the cloud, we clone

that so we can get a local copy of it. And again, that cloned bit is

exactly same as remote except that now it’s in local. Within that local

repository, you have your master branch. We can create these things

that are called feature branches. Feature branches are just ways for

us to add more content to our page. For example, we could add

a contact feature branch or a home feature branch, which means,

respectively, contact page would be the contact feature branch and

home page would be the home feature branch. Then, we have these

things called commits, which is just a state of your repository at a

given time. Or, it is just a checkpoint in your branch to represent a

save.”

David: “To check your progress.”

Ted: “Yes, thanks, David, for adding on to this. Once you make a

commit, it is just a save point in your files, which is very important.

One important thing to know about content for each of these com-

mits is that all forms of similar content should remain on the same

branch. For example, for your contact branch, you should have stuff

that represents anything that put for your contact page. Another

very important thing to know is that a push is just to upload your

given branch to the remote repository to make it all a thing.”

Gio: “Hey, what’s a push again?”

Ted: “A push is to upload. Also, if you wish to, at the end, after you

77

www.manaraa.com

have all your commits done to each individual feature branch, you

must merge all of them into your master branch.”

(Example 2)

Mark: “Alright, so we have GitHub. We cloned it, to download file,

right? You create new branches. And then, after creating branches,

you need to work on the branches. Commit and update the branches.

Work, so you need to commit again. Once you’re done committing

and pushing. And then, you merge the home page branch to the

master branch. Add other branches to that master branch. Merge

them into the master branch. So that it has all the code in your repos-

itory.”

Paul: “So, every time you commit, does it update your local file, or

do you have to clone every single time you commit?”

Mark: “That updates your local file. You work on your local file.

And then, you push. That updates the remote repository as well.”

Paul: “Okay.”

Eli: “Do you have to put your product page branch in master

branch?”

Mark: “Yes.”

These examples show how the in-class discussion went; the most advanced

students in each group, usually the group leader, led the discussion by explain-

ing their own understandings and their notes made during the lecture. The

other members of the group often followed up with their questions. In those

two examples, the group leaders were using the technical terms in explaining

78

www.manaraa.com

the essential steps of the feature branch workflow and the other group members

seemed to follow the explanation. This shows the feasibility and learnability of

the Git workflow as a course material through collaborative learning.

In the in-depth analysis of the small group discussion and the focus group

interview datasets, we were able to also find the misconceptions, misuse of the

terms, and a lack of clarity in understanding that the participants had in learn-

ing Git workflow. Table 5.2 shows the frequency of the misconception identified

through a content analysis of the students discussion logs on the feature branch

workflow. Note that this part of results reflects the participants’ conceptual un-

derstanding on the subject because the lecture and discussion occurred before

their project 2 using GLIDE during which they actually performed actions for

the Git-related operations on their computers for the first time.

As the participants were told to discuss what they learned at the end of the

sequential lecture sessions for the three days, it seems natural that the topics

covered earlier (e.g., repository and clone) were referred more frequently than

those covered later (e.g., commit, push, and merge) in total. It’s also under-

standable that the largest portion of the participants discussion was around the

branches, master and feature branches combined, since the branches are the

main unit of operation in the feature branch workflow. We couldn’t find the

empirical evidence of participants’ misconceptions or questions on local repos-

itory, while merge seemed to be the most challenging for the participants to

understand.

79

www.manaraa.com

Table 5.2: Content analysis results on the frequency misconception identi-
fied in the feature branch workflow

Terms for

Git Workflow

Reference

Count

Misconception

Count

Example of Misconception or

Question

Types of Misconception or Challenges Identi-

fied

Repository
Remote 15 1

“What’s the difference between

Git and GitHub?”

· Distributed model with the central repository

Local 18 0 N/A N/A

Clone 24 2

“We can download the remote

repository as a zip file. Why do

we clone?”

· Metadata for tracking history

Branch
Master 13 2

“Does the team leader make the

master branch?”

· The origin of master branch

Feature 18 3

“So, basically, it allows the group

members share each other’s files

because everyone downloads the

files?”

· Asynchronicity

· Branch-level work unit

Commit 16 3

“So, every time you commit, does

it update your local file, or do you

have to clone every single time

you commit?”

· Asynchronicity

· Distributed model with the central repository

Push 5 1
“Hey, what does a push mean,

again?”

· Skipped often

Merge 15 7
“Do you have to put your product

page branch in master branch?”

· Automatic process of fast-forward merge

· Asynchronicity

· Branch-level work unit

· Distributed model with the central repository

5.5.1.1 Branch-Level Work Unit

One of the most frequent errors in understanding the feature branch workflow

we identified in the dataset was rooted in the understanding on a branch as a

unit of work, rather than files and folders. Because a branch is an abstract con-

cept, the participants needed to adjust to the new way of thinking. This example

of students discussion below shows the learning gain required to understand a

80

www.manaraa.com

branch as a work unit in the feature branch workflow.

Adam: “We have the master branch and we all make feature

branches.”

Beck: “Does the team leader make the master branch?”

Adam: “No, we already have it. We make feature branches, and

then, we make commits.”

Carlos: “What exactly is... A branch is like... Is it like a folder? If the

master branch holds files, then it’s like a folder, essentially, I guess.”

Dana: “Is this easy for you guys?”

Adam: “Yeah, probably.”

Carlos: “No.”

Dana: “No, right?”

Beck: “This is so much more difficult than what we did before.”

Adam: “And then, we make commits and merge them together. And

it makes the whole page.”

Beck: “Okay, so everyone gets a feature branch. We assigned a role.

We keep committing, just like a checkpoint. And then, we’re done.

And then, we merge.”

The participants had the basic computer skills and literacy to handle files

and folders. Branches represent another flexible abstraction of a collection of

files and folders in the repository so that a user can dynamically switch be-

tween, where each branch may have different content according to the author

and purpose. Since the participants haven’t been exposed to this concept or

81

www.manaraa.com

used a branch, the notion that “a branch has files and folders you are working

on” might have brought about the misconception that a branch is another type

of a container, such as a folder. Technically, Git manages multiple branches by

dynamically keeping track of the changes in the file system, so Carlos’s inter-

pretation of a branch as a folder-like static container is inaccurate. However,

from the user’s perspective, it also makes sense that each branch, as a top-level

container for files and folders, contains different contents where it has an option

to automatically merge into another. This result shows how the participant in-

terprets the novel concepts in Git workflow from the technical vocabulary and

skills they already have. Carlos’s reference in the focus group interview was

encouraging in the sense that the learning in the Git workflow was challenging

enough for the participants to stretch their way of thinking at manageable levels

when they had a chance to actually apply those concepts in the lab activities.

Carlos: “It was really hard in the lecture, but when we did the

project, it turned out to be new terms developers use, but it’s pretty

much what we do. We change file names, we keep separate folders

not to mess up on the colleagues’ files, and it’s like, we look for the

changes in files to update those files. You have the tools to do all this

stuff on GLIDE and GitHub, so it’s really convenient.”

He closely related the essential steps of the feature branch workflow to his

prior experience in working on group projects. This quote from Carlos is an-

other piece of evidence supporting that the participants were able to build con-

ceptual models of the proposed work process, rather than they relied on how

the software tool guides them by rote. In addition, he acknowledged the techni-

cal terminology is used by professional software engineers and developers and

82

www.manaraa.com

actively mapped what is means in terms of what he did for his own project.

5.5.1.2 Asynchronicity

The most frequently repeated misconception seemed to stem from asynchronic-

ity, which means two or more pieces of individual contributions are made at

different times; not in a synchronized fashion. This misconception was found in

relation to feature branch, commit, and merge. This excerpt from the students

discussion below show how participants might have misinterpreted those Git

operations due to the unfamiliarity with asynchronicity.

Matt: “So, basically, from merge, you can put all the progress?”

Rick: “Each of us works on a different section of the repository.”

Matt: “Like you can take like, you being master branch, him being

the whole product page, and I being the about page. All the progress

we made was uploaded to you.”

Rick: “Yup.”

Matt: “If he committed, he saved his progress.”

Rick: “Right. He can also commit on some other branches. Then,

that branch goes to master.”

Ralph: “Does it allow you to share the progress?”

Matt: “I’m not sure. Does it?”

Rick: “It does, because every commit made on the other branches

goes into the master. So, master has every single commit on it.”

83

www.manaraa.com

Matt: “So, basically, it allows the group members share each other’s

files in right away, because everyone downloads it?”

Rick: “No, they’re working on separate branches at different times.”

Matt: “Okay. So, it allows each of the members to do one single

task.”

In the discussion on feature branches and merge among Matt, Rick, and

Ralph, Matt had clear understanding on feature branches as a separate unit

of work coordination (underlined). However, he didn’t fully understand

how merge happens (underlined) without understanding asynchronicity of the

workflow. The group leader, Rick, was able to correct him that commits on fea-

ture branches happen at different times and merge doesn’t happen in real-time.

This misconception was also observable in focus group interview. Kate talked

about her attempt to look up others’ work in performing the group project using

GLIDE.

Kate: “I wanted to see what he’s doing and tried to match the color

for the page I was working on. So, I went to his branch, but nothing

was there. I didn’t see anything he added to the template at that mo-

ment. I found it on master branch later, after he finished his work.”

Checking collaborators’ progress and making design attributes consistent

is an essential element in building websites as a group, but her approach to

doing that reveals she was presuming that the progress made by others is shared

in real-time, which is a misconception on asynchronicity of the feature branch

workflow. In this case, she was able to learn the updates become available once

the others’ feature branch is pushed and merged into master branch.

84

www.manaraa.com

5.5.1.3 Distributed Model with the Central Repository

One of the key ideas of the feature branch workflow is that each collaborator

can work one’s own local copies to make the potential merge into the shared

resources (master branch) for the incremental updates. This model is tied to a

specific architecture involving a remote repository (origin or upstream) and lo-

cal repository with feature branches where these repositories interact with each

other through Git operations. This model created a novel settings for the par-

ticipants; we observed that they have been sharing their files in peer-to-peer

using online messengers, as file attachments or as copied-and-pasted text chat

messages. In the focus group interview, the participants talked about the differ-

ences between the peer-to-peer sharing and the distributed model with the cen-

tral repository that the Git workflow employs. Even though this project was the

first time for them to work with the distributed model with the central repos-

itory, they commonly said this was helpful in incorporating their individual

contributions.

Jesse: “It was very messy when we send the code on Slack. I just

don’t know where the code goes when I received the file from the

team members. And I request the files over and over again when

I have no idea what’s the right one to copy or how to put them all

together in the right way.”

Ted: “The most memorable thing for the project was, it’s like merg-

ing all the code. It was actually the first time we knew how to merge

all we have. In DreamWeaver, we did not really know how to do it.

I really liked the feature where... when you put everything together

85

www.manaraa.com

into the master, in one place, and you make another branch, then

you have everything already. Putting everything in one place makes

it very simple.”

These examples show that the different model of settings that the Git work-

flow requires a certain level of adjustment built on top of their prior experi-

ence, which is favorable for an educational purpose, since it helps them share

resources in more organized ways and reduce the potential errors, according to

the participants.

5.5.2 Utilitarian Benefits of Using GLIDE

In addition to the learning gains from the lab activities using GLIDE, the par-

ticipants also reported on the utilitarian benefits of using it through the project

report submissions and the focus group interview.

5.5.2.1 Deployment and Handling the Remote Resources

As a web-based application that communicates with project repositories on

GitHub, GLIDE is designed to access user data including website resources on

the remote server. In addition, GitHub pages simplifies deployment of website

into a single configuration item. This application architecture and configuration

support very easy deployment and handling of remote resources. The partic-

ipants acknowledged the usability of this feature as one of the direct benefits

they can get from GLIDE.

86

www.manaraa.com

Adam: “You don’t have to upload files to your private server. You

don’t have to connect to the FTP. Everytime you commit and push,

you upload them.”

Trea: “I would say uploading would be tedious, something like that,

because the file names and stuff like that without GLIDE. Because

GLIDE is like simple. DreamWeaver is usually easy, but if you’re

using it for the first time, it’s not.”

This utility resonates with the teachers’ needs we identified in chapter 4

that deployment requires technology supports for novice students as it involves

the basic background knowledge on how to deal with web servers, which can

hardly be assumed for them to have. Even though the dataset collected only

from the students doesn’t explicitly reveal how teachers would like it, the teach-

ers’ needs we observed in chapter 4 suggest that this feature would also help

them reduce the managerial cost in teaching.

5.5.2.2 Better Organization of Project Resources

A branch as the unit of work appeared to have assisted in organizing the par-

ticipants’ project resources. It makes clear distinction of one’s work from the

others, encapsulates relevant files and folders, and labels the work divided for

individual contributions.

Bruce: “I’d say I felt the workload is less because it’s all separated

into branches. If not, it’s too much to work on.”

87

www.manaraa.com

Kaleb: “There is also that part where that’s like time management

for work efficiency. We know when we need to get things done. We

learned to manage our time much better.”

Project 2 and project 3 tasked the participants with the same lab activities

with the same levels of requirement, so there are no clear reasons to say the

workload actually reduced. One possible interpretation is that Bruce’s com-

ment on the perceived workload implies the participants might have benefited

from better organization of project resources that the Git workflow of GLIDE

approach provided. Moreover, Kaleb’s comment implies that this practical ben-

efit might have also improved their collaboration process by clarify the tasks

already done and to do next for the collaborators. Work efficiency and time

management that Rick mentioned were not the direct goal this study tried to

achieve through GLIDE approach, however, the way GLIDE and the feature

branch workflow transform student tasks suggested this positive impact on

their collaborative lab activities.

5.5.2.3 Tools for Peer Review

The participants reported that the combination of GLIDE and GitHub provided

usable and useful tools for peer review, which they think improves the quality

of their work.

Rick: “We’ve done separate pages on our own. Sometimes, we need

someone to look over our code and ‘oh, you have a mistake here.

Fix this and that’, a peer edit, basically. You’re advised to make your

pages better.”

88

www.manaraa.com

Interviewer: “What was the most memorable thing about project 2?”

Derrik: “For everyone in my group, including me, it was nice that

everyone actually contributed. We communicated [on GitHub] and

used GLIDE.”

The specific tools that the participants used for peer review include pull re-

quest to notify when they’re ready for a review (on GLIDE and GitHub) and

the merge conflict editor (on GitHub) to make changes in the shared code. In

project 1 without GLIDE, review was only possible by visiting another collabo-

rator’s computer without any systematic tools support. This also seems to be a

practical support for peer review or peer instructions for teachers, judging from

the teachers’ report that they actively employ peer instruction to teach lab ac-

tivities in chapter 4. Derrik’s comment shows that the combination of GLIDE

and GitHub worked well as tools for peer-driven code review. They were able

to communicate using the editor on GitHub in resolving merge conflict for inte-

gration, while writing individual code on GLIDE. We argue that our approach

presented a rare example of natural integration of peer-driven code review for

in-class collaborative lab activities.

These examples show the practical assists in performing lab activities that

the participants were able to directly get from GLIDE approach and the Git

workflow. This supports the argument that GLIDE approach is feasible to im-

plement in actual classrooms without demanding too much to the students in

terms of making adjustments in the way they perform the tasks. As a scaf-

folding tool for novice students, GLIDE seems to have provided the sufficient

affordances and ease-of-use as well as the effectiveness in the task performance.

89

www.manaraa.com

5.5.3 Fair Contribution in Collaborative Web Programming

We also investigated how the GLIDE approach contributes to fostering collab-

orative learning environment in a CS classroom. From the coordination and

integration records of the participants, we observed that this approach helped

the participants fairly contribute to their collaborative group projects in a CS

classroom context.

The first evidence for the GLIDE approach contributing to the fair contribu-

tion in collaborative web programming was found during the observation of

how they coordinate the work. The project plans and designs that each group

submitted included their coordination plans in the early stages of each project.

In project 1 with no guidance for collaboration process, an imbalance of types of

tasks was commonly found across the groups; all the seven groups had at least

one member who was not planning to contribute to any coding task at all, but

graphic designs for image resources using Photoshop application. The partici-

pants might have different specialty skills in different areas or interest, but work

coordination for a collaborative in-class project must not allow them to avoid a

specific type of task. Making this imbalance even worse, all of the three female

students in this class were those dedicated designers. Those designer students

usually created logo designs, edited background images, and generated color

schemes for other members using Photoshop. Creating image assets is a nec-

essary task in building a website, however, it’s hard to justify that the designer

students solely focus on this task for the group project in the Web Client Pro-

gramming course for fulfilling the learning goals of this course. In sum, project

1 without guidance in the coordination and the way they work as a group left

the participants to merely stick to one’s preferred types of task, which brought

90

www.manaraa.com

about the imbalance of tasks as a result.

On the other hand, the coordination plans the participants submitted for

project 2 had two noticeable changes from those for project 1. First, their coordi-

nation plans were described in more concrete detail, in terms of who’s going to

be responsible for what tasks. In project 1, six out of the seven groups submitted

the coordination plans with very abstract description of tasks (e.g., coding and

design) or even unclear position titles (e.g., CEO and product manager) without

any further explanation on what tasks they were going to perform. In project

2, however, six out of seven groups came up with more concrete coordination

plans, where each member’s role is specified at page level or feature level. Sec-

ond, the imbalance of tasks was mitigated in terms of the dedicated designer

role. The coordination plans for project 1 showed at least one dedicated de-

signer, who’s not supposed to work on HTML, CSS, or JavaScript, per group,

but design graphical resources using image editing tools. However, their coor-

dination plans for project 2 didn’t have any dedicated graphic designers, which

means everyone in a group had to contribute to coding tasks in HTML, CSS, or

JavaScript. Table 5.3 shows how the role descriptions of the dedicated graphic

designers have changed, based on the coordination plans the participants sub-

mitted in the early stages of each project.

Along with the “dedicated designers”, another point of the observation that

characterizes the imbalance of contribution in project 1 was manual code inte-

gration by the group leaders. In project 1, each group member copied the code

he wrote and pasted it on an online messenger (Slack). The group leader re-

ceives the message, copies the code segment, and paste it into his own copy of

the website codebase (Figure 5.5). In doing so, figuring out where the code

91

www.manaraa.com

Table 5.3: The changes of the removal of dedicated graphic designers iden-
tified in the coordination plans

Team Changes in the Roles of Dedicated Graphic Designers

1
Project 1 Oscar: Creating logo and banner

Project 2 Oscar: Creating images and coding CSS

2
Project 1

Paul: Designs

Eli: Designs

Project 2
Paul: Buying the Product page / Photoshop images

Eli: About Us page / Lead designer - CSS

3
Project 1 Rick: Designer

Project 2 Rick: JavaScript

4
Project 1 David: Main designer

Project 2 David: Designing the products / coding Buy page

5
Project 1

Job: Graphic designer

Kevin: Graphic designer

Project 2
Job: Web designer for Home page

Kevin: Web designer for External Services Link page

6
Project 1 Dana: Logo design

Project 2 Dana: Logo design and coding Product page

7
Project 1

No coordination plans specified (Observed Perri, a female

student, being the dedicated designer in this group)

Project 2 Perri: Forums page

segment goes, which specific part has been updated, and how to make the

code work with other parts are solely left onto the group leader’s responsibil-

ity. These tasks are the additional work to individual commitment that group

projects essentially involve, which means the group leaders are burdened to be

in charge of the integration tasks. On the other hand, the merge operation of the

feature branch workflow makes the integration process more accessible to every

92

www.manaraa.com

member in a group and automate the tedious repetition of identifying updated

piece of code, making comparison between old and new versions of it, and re-

placing old code segment with the new one. Thus, the merge commits made by

non-group leaders are the evidence that supports the GLIDE approach supports

better balanced code integration process in a group project. Figure ?? shows the

diverse patterns of merge of code made by different participants.

Figure 5.5: Sharing code and website content on an online messenger for
manual code integration by the group leader

As a follow-up analysis, we also observed how well-balanced the partici-

pants actual contribution was in project 2. GitHub has a built-in feature called

“insight” where the statistics of all the contributions from the collaborators are

aggregated and visualized in plots (Figure 5.7). The contribution statistics in-

clude how many code lines were added, how many code lines were deleted,

and how many commits were made by each contributor to the final outcomes

93

www.manaraa.com

Figure 5.6: Examples of commit trees showing that all the members can
work on code integration following the Git workflow

Table 5.4: Contribution stats per group from Git log

Team
Number of

Commits per Member

Code Lines

Addition per Member

Code Lines

Deletion per Member

1 5 / 3 / 3 / 3 531 / 509 / 495 / 193 71 / 42 / 99 / 29

2 25 / 11 / 4 / 3 4086 / 569 / 555 / 516 1842 / 79 / 117 / 102

3 5 / 2 / 2 / 1 672 / 315 / 281 / 159 217 / 193 / 132 / 53

4 29 / 6 / 4 3591 / 369 / 11 1658 / 10 / 5

5 17 / 4 / 2 / 1 641 / 243 / 18 / 46 557 / 4 / 9 / 12

6 14 / 10 / 2 / 1 304 / 333 / 152 / 56 104 / 212 / 14 / 20

7 15 / 10 / 1 / 1 424 / 1188 / 100 / 248 544 / 623 / 8 / 5

on master branch in a repository. Given that the GLIDE approach in project 2

alleviated the two phenomena regarding the imbalance into the group project,

all the seven groups showed acceptable level of balanced contribution across

the group members in terms of the number of commits, number of addition of

code lines, and number of deletion of code lines (Table 5.4).

94

www.manaraa.com

Figure 5.7: Repository “insight” visualizing the participants activity dur-
ing the project period on GitHub

5.6 Discussion

The results presented above support two arguments that this chapter makes: 1)

the GLIDE approach might provide an effective learning-by-doing opportunity

for novice students with well-structured collaborative process through group

projects in a web programming course and 2) the design of the GLIDE approach

might encourage better balanced contributions of the students within a collabo-

rating group. In this section, we add further explanation on the findings based

on the observation.

The findings regarding the learning gains through GLIDE rendered the po-

tential for more collaborative CS education. While using version control sys-

95

www.manaraa.com

tems in programming activities has been considered as an advanced users’ skill,

our observation that supports the learnability of the proper collaboration pro-

cess sheds light on introducing the tools and curriculum into novice levels.

Also, we argue that the difficulties and misconceptions the participants faced

in our observation might suggest more of an opportunity to more actively pur-

sue this approach, largely because the students were able to resolve and fix the

errors through the in-class discussion with the help from another student. In

addition, the sources of misconceptions, such as branch-level work unit, asyn-

chronicity, and distributed model of server and clients, might address signifi-

cant and relevant topics to cover. For example, understanding branch as a work

unit involves abstraction, which is one of the most crucial elements of computa-

tional thinking; asynchronicity in the distributed model renders a good chance

to cover learning the fundamental web architecture, embedded in the lesson for

the collaboration process.

In terms of fairness in collaboration, the design of the context and GLIDE ap-

proach seemed to have the participants behave differently in terms of coordina-

tion and integration. Then, what did lead the participants to different behavior

with GLIDE? One possible explanation on how GLIDE structured their behav-

ior in better balanced ways is that the branch structure and the user interfaces of

GLIDE and GitHub made their work division clearer, which in turn led to fair

coordination. After project 1 finished, the participants learned how the work co-

ordination is embedded in the feature branch workflow during the three days

of lecture; each branch may represent a unit of tasks, the software tools (GLIDE

and GitHub) show who created the branch, each commit on a branch shows

who made the commit, the commit history makes their work progress trace-

able, and a commit has the summary of the task completed through commit

96

www.manaraa.com

messages. Furthermore, the participants had a chance to actually try those fea-

tures during the practice time at the end of the lecture on each of the three days.

When they were told to plan and design their project as they did for project 1

on the first day of the project 2, they might have chosen the more explicit dis-

tinction among the tasks and relatively more concrete work definition, as they

learned how branches work. The user interfaces on the software tools have

labels of who created the branch and who made the commits. Also, the partici-

pants used branch names as the identifier for a feature or a page to build on the

branch itself. This improved clarity of coordination might have led to the better

balanced coordination.

This explanation resonates with existing research on task awareness and

group awareness in CSCL, which are known as effective mediators that help

successful coordination. Task awareness refers to information on the materials

and strategies needed to successfully perform the task [45], while group aware-

ness means information on the states and expected behaviors of team members

individually or as a whole [51]. Those features of GLIDE and GitHub mentioned

above, clear separation of work division, explicit labeling for the work divided,

and the potential learning from the lecture and practice before project 2 seemed

to have provided better cues for task awareness and group awareness.

We conducted follow-up analysis to identify qualitative evidence support-

ing the explanation that the participants perceived increased task awareness

and group awareness with GLIDE approach, which might have in turn changed

their behavior during the lab activities in project 2. From the focus group inter-

view data, we were able to observe a participant’s reference on task awareness

as follows.

97

www.manaraa.com

Ralph: “In project 1, we were almost like more of whatever we can

do, just get it done, but for project 2, we had to follow the guideline

using GLIDE.”

Interviewer: “What do you mean by the guideline?”

Ralph: “We had to work on GLIDE. Actually, for project 2, we were

more organized. That’s what I want to say.”

Compared to “Whatever we can do” implying ill-defined procedure of the

tasks, the “guideline” of GLIDE approach seems to have given him more infor-

mation on the task. Even though we weren’t able to directly measure how much

task awareness the participants had for each project, this example reference sug-

gests the possibility of the workflow having contributed to the increased aware-

ness of the materials and strategies for the tasks.

The reference by Alice in section 6.4.2, saying that “If you want to see some-

one else’s work in your team, you could just look into their branches”, is a good

example reporting on her perceived group awareness. She was aware of other

collaborators’ roles and able to see what they were working on. In this specific

case, branch structure and the labels worked as the cue for the awareness that

informs her about the tasks that the collaborating group is working on.

The proposed lesson plans and GLIDE made the Git workflow more ap-

proachable by providing the adequate level of explanation, rather than sim-

ply abstracting away the technical fundamentals of how to work with others

on web programming. Reflecting on Vigotskian learning theory [127], the pro-

posed approach tried to implement the better contextualized learning in three

ways: first, in the process of structured collaboration, GLIDE scaffolds the diffi-

98

www.manaraa.com

cult Git operations (e.g., command line tools) to bring those difficult knowledge

down into the students’ ZPD (zone of proximal development), where they can

learn through interaction with others; second, the group project context we de-

signed for the DBR actively involved the interaction with MKO (more knowl-

edgeable others), which was the instructor and the other group members, in-

cluding in-class discussion and communication during the lab activities; third,

our approach actively involves the terminology, norms, and tools widely used

in the field of software engineering, which helps indirect interaction with the

broader society, according to the theory.

On a practical side, as pointed out in Related Work section, collaborative

programming using version control systems has been left out of the curriculum

for young students. This gave novice students almost no options in tools and

courses to systematically learn how to properly work with others in learning

CS. The lesson plans we designed and GLIDE to support the lesson plans will

help teachers and students with the widely used collaboration process.

5.7 Summary

The existing research has been using Git as a courseware or tools for lab ac-

tivities, but little has been reported on teaching novice students how to collab-

orate on the foundation of Git workflow. From the propositions made in the

previous chapter, which calls for a better structured and effective way of work-

ing with others, we implemented a classroom design with lesson plans on the

feature branch workflow and a software tool, GLIDE, that students can build

websites as a group following the workflow. We took DBR approach to pro-

99

www.manaraa.com

pose and deploy GLIDE approach, where students took a series of lectures on

the feature branch workflow and performed group projects applying the skills

and knowledge they learned. The observation and qualitative data collected

from this intervention showed that, unlike the general perception of teachers on

Git, the participants were able to understand and apply how to effectively work

with others on the feature branch workflow using GLIDE, and consequently,

build their group websites with no serious issues. The students discussion log

revealed that they had misconceptions in branch-level work unit, asynchronic-

ity in making progress, and distributed model with central repository. How-

ever, the discussion data also showed that the participants’ peer discussion was

enough to correct those errors. Furthermore, our approach emerged as a poten-

tial measure to improve fair contribution among group members, by increasing

their awareness of the traceability of their work and explicitly clarifying their

work definition through branch structure.

100

www.manaraa.com

CHAPTER 6

STUDY 4: QUANTITATIVE EVALUATION OF STUDENTS’ LEARNING

EXPERIENCE WITH GLIDE

6.1 Motivation

In the previous chapter, we proposed the lesson plans and GLIDE to teach

novice students how to effectively collaborate with others in compliance with

the widely used Git workflow in class project settings. To get better informed

about the consequence and influence of the proposed approach, this chap-

ter report on the quantitative evaluation of students’ learning experience with

GLIDE. We take a field experiment approach to the evaluation as part of the

intervention we reported in the previous chapter, rather than conducting an

isolated and decontextualized lab experiment for a usability study, to better un-

derstand the students’ experience in the actual learning context. In this chapter,

we report on the hypotheses testing on the effects of proposed approach to col-

laborative workflow using GLIDE on students’ learning experience from a field

experiment using survey questionnaire. In sum, we provide insights into how

to better teach collaborative programming through our proposed approach and

an empirical study as an evaluation of the proposed approach.

6.2 Hypotheses

We generally hypothesized that novice students report more positive learning

experience when they performed web programming projects following the scaf-

101

www.manaraa.com

folded feature branch workflow using GLIDE compared to when they did with-

out the guidance. Since learning experience is a vague concept mingled with

diverse elements, which makes it hard to evaluate or operationalize, we focus

on three attitudinal and experiential outcomes of learning, drawn from exist-

ing literature. First, we hypothesize that performing project with the guidance

of the scaffolded feature branch workflow leads to higher levels of student en-

gagement [106]. Student engagement has been discussed as a crucial factor for

successful school completion and well-motivated learning [107]. Shernoff et

al. [106] argued that reforming student-driven activities in classroom to sup-

port an appropriate level of challenge for students’ skills increases student en-

gagement. In this research, the proposed approach to collaborative web pro-

gramming project using GLIDE scaffolds the hard tasks of Git workflow, so

that high school students can perform the project. Also, the proposed lesson

plans provide the terminology and conceptual model of the workflow, where

students can develop sufficient levels of skills for collaborative programming

tasks. Thus, the scaffolded feature branch may contribute to increased levels of

student engagement.

The second hypothesis is that the proposed approach to the collaborative

web programming project brings about students’ higher levels of psycholog-

ical ownership [121] in projects. From organizational behavior perspectives,

psychological ownership in work context has been a significant factor for work

performance and organizational citizenship, that is correlated with a sense of re-

sponsibility in work environment [121]. In this research, students are supposed

to work on their own feature branches according to the way Git workflow or-

ganizes individual units of collaborative work. This better structured way of

distributing and assigning individual’s work unit may contribute to increased

102

www.manaraa.com

levels of psychological ownership in student project.

Lastly, we hypothesized that the proposed approach increases students’ per-

ceived fairness [42] in contribution and acknowledgement in performing group

projects. One of the most frequently reported difficulties in collaborative learn-

ing in education is accurate and fair credits for individual performance [42].

The feature branch workflow explicitly visualizes individual’s contribution by

showing the contributor’s user name and what and how much code the user

contributed. This resolves the ambiguity of expected credit for oneself and for

other collaborators, which contributes to increased levels of perceived fairness

in contribution and acknowledgement.

To sum up, we hypothesized that the scaffolded feature branch workflow

using GLIDE in collaborative web programming projects leads to:

H1 : higher levels of student engagement

H2 : higher levels of psychological ownership in project

H3 : higher levels of perceived fairness in contribution and acknowledgement

To test these three hypotheses, we conducted a field experiment in the actual

education settings as follows.

103

www.manaraa.com

6.3 Methodology

6.3.1 Participants

The same group of students who participated in the qualitative study in the

previous chapter joined this survey study. They were 27 12th grade students

(24 male and 3 female; aged from 17 to 18) taking Web Client Programming

course at a public high school with a concentration on information technology in

Queens, NY. They had the basic skills in HTML, CSS, and JavaScript through a

group project to build static websites before this intervention. This intervention

was their first experience in using Git, GitHub, and GLIDE.

6.3.2 Procedure and Experimental Design

We designed a one-way within-subject field experiment to examine the effects

of the intervention in a real-world context. One of the reasons to have chosen

the one-way within-subject A-B-A design over a more conventional between-

subject design with treatment and control groups was because of practical limi-

tations in finding comparable class for the control condition, where the instruc-

tor of the class agrees to participate. Another reason was to separately inves-

tigate the treatment effects and time-based effects through repeated measure-

ments; using A-B-A design with repeated measurements, it becomes possible to

separate the gains or losses in outcome variables explained by time (or the iter-

ation of projects from project 1 to project 3 in this research) from the treatment

effects.

104

www.manaraa.com

The grouping and matching scheme was the same as the observational study

in the previous chapter; they were randomly grouped into 7 teams (6 teams

with 4 and 1 team with 3); each team came up with an idea for an imaginary

technology product and was tasked with two website-building projects (project

1 and 2 in a sequence). The participants performed each web design project

over 10 sessions where each session was 45 minutes in length. The participants

took lecture on the feature branch workflow for six sessions between the two

projects (1 and 2). Once they completed the project 2, they moved on to the

next website-building project (project 3) of the course without our intervention.

Figure ?? illustrates the procedure.

Figure 6.1: Procedure for intervention and survey

6.3.3 Data Collection

We conducted three iterations of repeated measurements of a survey question-

naire in A-B-A design: survey 1 after project 1 (no guidance in workflow), sur-

vey 2 after project 2 (the feature branch workflow on GLIDE), and survey 3

after project 3 (no guidance in workflow). The questionnaire used 15 items (5

105

www.manaraa.com

items for each variable) to ask the participants’ self-reported student engage-

ment, psychological ownership in project, and perceived fairness in contribu-

tion and acknowledgement during the group projects, using a 7-point Likert

scale. These measurement items were either adopted from existing literature

on each outcome variable or newly composed to fit in the group project context

and the age levels if necessary. Table 6.1 shows the measurement items used for

the survey.

After all the surveys, we conducted focus group interviews with the partic-

ipants to get informed about the students’ learning experience that the prede-

fined survey questionnaire cannot capture. Interview questions included the

students’ perceived value of learning the collaborative workflow and perform-

ing a group project following it, and the challenges and limitations of the pro-

posed approach from students’ perspectives. All the participants chose to join

the interviews with their group members who performed the projects together.

They joined the three interview sessions with two or three groups each and each

session was approximately 25 minutes in length.

6.3.4 Data Analysis

The dataset consisted of 81 questionnaire responses (27 participants 3 repeated

measurements) in total. We analyzed the data with a linear mixed-effects model

approach, which is an extension of linear regression, involving the estimation

of fixed effects (the treatment and time) and random effects (participants). This

approach leads to less unexplained variance and more statistical power than

traditional approaches, such as repeated measures analysis of variance, because

106

www.manaraa.com

Table 6.1: Survey questionnaire

No. Outcome Variable Measurement Item Note

1

Student Engagement

I was concentrating on the project. Shernoff et al. [106]

2 I found the project activity interesting. Shernoff et al. [106]

3 I enjoyed the project activity Shernoff et al. [106]

4
I was engaged in writing code or designing im-

ages for the project.
Newly composed

5
I was engaged in discussion with the team

members.
Newly composed

6

Psychological Ownership

This is “MY” project. Van Dyne and Pierce [121]

7
I feel a very high degree of my ownership for

this project.
Van Dyne and Pierce [121]

8
I sense that the outcome website is “my” web-

site.
Van Dyne and Pierce [121]

9
The team members and I feel as though we own

the project.
Van Dyne and Pierce [121]

10 I feel I invested a lot in this project. Newly composed

11

Perceived Fairness

All the team members developed key parts of

deliverable.
Fellenz [42]

12
All the team members showed “good citizen-

ship”.
Fellenz [42]

13
I feel that the amount of the work across the

team members was well-balanced.
Newly composed

14
I can easily identify everyone’s contribution in

the project outcome.
Newly composed

15
Everyone in my team had fair share of work-

load.
Newly composed

107

www.manaraa.com

it doesn’t aggregate observations for a unit of analysis (a participant), which

results in a loss of information [112]. Using this statistical model, we examined

the significance of the model using p-value and the size of effects using Cohen’s

d. We used lme4 package [13] in R [117].

The focus group interview recordings were transcribed and analyzed to sup-

port or complement the survey data. We coded and extracted the transcript to

get insights into the students’ learning experience, students’ understanding of

the feature branch workflow, and overall impressions and motivations of col-

laborative programming.

6.4 Results

6.4.1 Survey Data

Table 6.2 summarizes the descriptive statistics (means and standard deviations)

of the outcome variables measured in the three surveys. The statistical analysis

using a linear mixed-effects model showed that use of scaffolded feature branch

workflow is a statistically significant positive predictor of student engagement

and perceived fairness (student engagement: t(52) = 2.297, p = 0.025, marginal

R2 = .049, conditional R2 = .603, standardized regression coefficient: 0.28; per-

ceived fairness: t(52) = 2.189, p = 0.033, marginal R2 = .028, conditional R2 = .654,

standardized regression coefficient: 0.324) within the 95% confidence interval,

getting aligned with the hypotheses. The treatment had a marginally significant

positive effect on psychological ownership (t(52) = 1.984, p = 0.052, marginal R2

= .078, conditional R2 = .344, standardized regression coefficient: 0.439) within

108

www.manaraa.com

Table 6.2: Descriptive statistics (mean and standard deviation)

Outcome Variable M1 (SD1) M2 (SD2) M3 (SD3)

Student Engagement 5.4 (0.6679) 5.73 (0.7232) 5.73 (0.6838)

Psychological Ownership 4.59 (1.2171) 5.33 (1.08) 5.19 (1.0338)

Perceived Fairness 5.12 (1.2449) 5.56 (0.8485) 5.34 (1.0297)

the 90% confidence interval. The treatment appeared to have medium effect

sizes on all three of the dependent variables as measured by Cohen’s d [9] (stu-

dent engagement: 0.553, psychological ownership: 0.641, and perceived fair-

ness: 0.406). Figure 6.2 illustrates the treatment effects on student engagement,

psychological ownership, and perceived fairness with and without the treat-

ment.

Figure 6.2: Effects of using scaffolded feature branch workflow on student
engagement, psychological ownership, and perceived fairness

For those dependent variables where our treatment had significant effects

on, we examined the effects of time to see if the effects were merely the out-

come of repetition of projects over time. Time was also a significant predictor

of student engagement (t(52) = 2.156, p = 0.035, standardized regression coef-

ficient: 0.15) and psychological ownership (t(52) = 2.351, p = 0.023, standard-

ized regression coefficient: 0.3) within the 95% confidence interval, but not of

perceived fairness (t(52) = 1.278, p = 0.206, standardized regression coefficient:

109

www.manaraa.com

0.11). This result indicates that the repetition of project over time wasn’t a factor

for the increase of perceived fairness, while it helped the increased levels of stu-

dent engagement and psychological ownership. Figure 6.3 depicts the patterns

of student engagement and psychological ownership over time throughout the

intervention.

Figure 6.3: Effects of time on student engagement and psychological own-
ership

Figure 6.3 illustrates the increasing patterns of student engagement and psy-

chological ownership from project 1 (with no treatment given) and project 2

(with the treatment given) and the subtle decreasing patterns of them between

project 2 (with the treatment given) and project 3 (with the treatment taken

away). We conducted a follow-up statistical analysis to examine whether the

difference between project 2 and project 3 is significant. The two-tailed t-test

between the two data points showed that there are no significant differences

in both variables between project 2 and project 3 (student engagement: t(52) =

0.000, p = 1; psychological ownership: t(52) = 0.4866, p = 0.6286). This result in-

dicates that the increased levels of student engagement and psychological own-

ership between project 1 and project 2 have sustained the levels without making

notable drops.

110

www.manaraa.com

6.4.2 Focus Group Interview Data

The participants commonly acknowledged the salient differences between the

different ways of working together they went through: unstructured collabora-

tion using Dreamweaver and following the feature branch workflow on GLIDE.

When asked about the favorite features of the feature branch workflow and

GLIDE also talked about the benefits of using separate branches in a shared

repository for a group in exchanging information. From their quote, we were

able to see their understanding on the core idea of feature branch workflow,

which is individuals make their own contribution on branches, or separate log-

ical copies.

Arther: “In working together and viewing other people’s branch, I

really like the feature when you put everything together in the mas-

ter and you make a branch, then you have a copy of everything al-

ready, so you can work on that and you update it. Merging every-

thing together is very simple.”

Alice: “If you want to see someone else’s work in your team, you

could just look into their branches, instead of going to their computer

or copy their code.”

We also identified the students’ appreciation of and motivation for collabo-

rative programming practice. Baker, for example, expressed his desire to learn

more about GitHub responding to the question of how was the instructions on a

collaborative workflow using GitHub and GLIDE. Furthermore, Bill, one of the

most advanced students in this classroom, shared his anecdote on self-directed

111

www.manaraa.com

learning on Git command line tools after his project 2 using GLIDE, expressing

his passion in learning collaborative programming skills as the next step beyond

this class activities.

Baker: “We didn’t actually use GitHub.We used GLIDE that’s work-

ing with GitHub. Let’s say we’re gonna graduate from this program

and we go to work in September. We still wouldn’t know how to

use GitHub. We only talked about that one, really small part [oper-

ations of creating repository and merging branches, which students

performed on GitHub]. We know that one specific part. We don’t

really understand GitHub overall. In the account section, there are

more features we didn’t cover. [When he was asked if he wants to

learn more about Git or GitHub] Yes, because that’s what developers

use.”

Bill: “There was a learning the Git command line for me, on my own,

after this. [When he was asked what motivated his self-directed

learning] I didn’t feel like I want to use GLIDE later, when I become

a professional, it’s just awkward.”

6.5 Discussion

The results yielded several notable implications. First, students were able to

use GLIDE to use feature branch workflow to complete collaborative website

development projects. Second, the linear mixed-effects model suggests that our

approach to collaborative projects using the scaffolded feature branch work-

112

www.manaraa.com

flow and GLIDE turns out to be predictors of student engagement, perceived

fairness in contribution and acknowledgement, and psychological ownership

in the project, in line with the hypotheses. This result resonates with the signifi-

cance of scaffolding [132], or guided participation [127], as emphasized in edu-

cation literature. Due to the complexity of collaborative software development,

learners need scaffolding to guide the process. Furthermore, the help at the ad-

equate level, or the way that GLIDE scaffolded the Git workflow in this case,

reflects the tools, norms, terminology, and the way of working, which helps the

learning better contextualized in the long term. As mentioned in the related

work section, this differentiates our unique approach from other collaborative

programming platforms that implement unstructured forms of collaboration.

Another notable point in the result is that the treatment had medium effect

size on all of those outcome variables. As reported in effect size by Cohen’s d

measurement, the treatment brought about positive shifts of the outcome dis-

tributions by approximately 0.4 0.6 times of the overall standard deviation

in average. Considering that the effect size typically accepted in experimental

studies in psychology is around Cohen’s d = 0.4, the effect sizes of the treatment

this research measured hover the general standard, indicating that the results of

the statistical analysis don’t only mean the significance of the estimated model

for those three outcome variables, but also argues the treatment had the sub-

stantial size of effects that is empirically observable.

The interpretation of the effects of time (Figure 6.3) renders another set of

noteworthy takeaways, as intended by the experimental design. First, the pat-

terns of the time-based effects on the two outcome variables support our argu-

ment that the increase in outcome variables between project 1 and 2 was due to

113

www.manaraa.com

the treatment, rather than the effect of repeated project performance; the scores

of the two outcome variables decrease once the treatment was removed. This

means that the pure time-based effects were not enough to increase or decrease

the levels of the outcome variables when the treatment was taken away (be-

tween project 2 and 3), whereas the positive effects were observed when it was

provided (between project 1 and 2). Second, the levels of outcome variables

in project 3 still stayed higher than those in project 1 based on the follow-up

analysis on the time-based effects between project 2 and project 3, even though

the scaffolding tool has been removed. We argue that the differences between

those two separate measurements represent the learning gains through the in-

tervention of this research; having learned and applied the abstract model of

collaboration to their class activities, even without the software tool, may im-

prove their learning experience in collaborative projects. This is an encouraging

implication getting in line with our premise that the way of collaboration is a

skill that can be developed and transferred to other contexts, instead of being

tied to a specific software tool or a context.

This piece of finding suggests the most significant contribution of this work:

the repeated tasks over time alone can’t help implementing more equitable col-

laboration, while a special treatment, such as GLIDE, to reform the collaboration

process can. One might think that young students are simply too premature to

learn those abstract strategy for fair and effective collaboration, as Floyd stated

in section 4.6.3. From this idea, it could be logical to conclude that when a stu-

dent develops a skill to have the bigger picture about relevant tasks, such effec-

tive collaboration through fairer coordination and contribution can be achiev-

able. However, the finding of this work states that GLIDE approach may give

a way to actively facilitate the effective and fair collaboration process without

114

www.manaraa.com

leaving this goal onto mere repetition over time.

Considering that CS students in advanced levels and professionals in the

field of software engineering in general learn Git command line tools and work-

flows at some point of their learning trajectories or careers, a scaffolding tool for

more equitable collaboration process for younger students, such as GLIDE, gen-

erates a chance for early exposure to the fair collaboration workflow. This early

exposure to the fair collaboration workflow implies that other techniques in-

cluding other programming languages the young students will learn can build

on top of the mental model for the collaborative process that they constructed

while using GLIDE. Thus, this implication opens the possibility of further col-

laborative learning in other diverse subjects in CS beyond introductory web

programming.

Deriving from the focus group, the students had their own interpretation of

the collaborative workflow, which implies they didn’t simply follow each step

by rote as GLIDE scaffolds the process. Also, they were able to talk about their

experiences using the terminology they learned in the six sessions of lecture

during the intervention, such as repository, branch, and merge. This also sup-

ports the argument that our intervention was effective enough to engage them

in active learning in collaborative workflow using Git. We think the quote from

Baker in results section sums our hope that students should experience how ef-

fectively collaborate in a classroom and be able to make connections to what

will happen beyond classrooms. Moreover, Bill’s quote in the results section

summarizes the value of GLIDE approach. If a scaffolding software merely pro-

vides a usability shortcut to a desired outcome, it is hard to claim the learning

effects. However, GLIDE exposed the novice users to the learning in a new

115

www.manaraa.com

domain when they’re ready to move on to the next step. These results contrast

with the general perception that Git is hard and teaching young students how to

use it is even harder. This implication suggests the significant potentials that CS

education can build on top of the foundation of collaborative workflow, given

proper ways of introducing the required techniques, knowledge, and adequate

tools, which may foster more inclusive education environment and better reflect

software engineering industry.

6.6 Summary

We designed and implemented a set of lesson plans and a supporting software

tool, GLIDE, to teach novice students how to effectively work together in build-

ing websites in a scaffolded way using the feature branch workflow within Git.

The field experiment showed that the approach is feasible, may contribute to

a better learning experience, based on survey responses. The focus group also

showed that the lesson plans had educational value and effects.

This research has several limitations. Overall, we could have done a more

rigorous evaluation with a between-subjects approach or a larger sample. We

tried to mitigate this issue as much by having an A-B-A within-subject experi-

mental design, with repeated measurements, and mixed-effects model for anal-

ysis that takes multiple observations into account.

116

www.manaraa.com

CHAPTER 7

GENERAL DISCUSSION AND CONCLUSION

This chapter provides points of discussion derived from the previous chap-

ters’ research approach as well as contribution and limitation. One of the con-

tributions of this work is that we implemented social learning platform in on-

line and physical education environment where students learn from software-

guided interaction (MOOCchat and GLIDE). Another primary contribution of

this work is to expand the common knowledge on how to properly teach collab-

orative programming in the field of CS education. Effective teaching and learn-

ing methods for collaborative programming have been an unanswered question

in an under-explored research area. Our own data collection to explore teachers’

practical requirement also identified such needs (chapter 4). In our approach to

teach novice students to collaborate through the feature branch workflow, we

found that the scaffolded workflow on Git version control system is effective

in guiding students’ lab activities. The following sections discuss what benefits

can potentially be achieved by employing our approaches and what theoretical

implications they have.

7.1 Benefits

7.1.1 Practical Contributions of MOOCchat

The most basic benefit of our first empirical approach, MOOCchat, is that it

helps educators replicate the small group oriented teaching practice in online

learning platform. In reality, teaching or learning is hardly an individual ac-

117

www.manaraa.com

tivity taking place in a classroom only for an individual student. Compared to

this, online learning environment assumes an individual student with isolation

from the others for the sake of convenience and for physical limitations. Even

though the MOOCs platforms have had discussion boards for questions and

answers, the absence of small group context has been one of the most easily no-

ticeable limitations in such online settings. As suggested in existing literature,

the context of small groups in learning in physical classrooms is a positive fac-

tor for effective learning [129, 128, 130]. In particular, Webb [130] found that it

is a desirable teaching practice to structure group activity to require students to

share their own explanations in linguistic forms with others. The direct benefit

from MOOCchat in this regard is that students learning in online environments

were able to learn in small groups matched online. They had an opportunity

to explain the coursework materials (quiz on software engineering) in linguistic

forms, similarly to Webb [130]’s work, to support their learning in the context of

small groups. As little, if not none, about how to support the real-time interac-

tion among students has been known when this work implemented MOOCchat

approach, this work presented the initial experience of how teachers and stu-

dents online could benefit from interactive learning in the online small group

context.

Another benefit of MOOCchat approach is that it might help alleviate the

attrition issue on large scale learning platforms. Online learning largely relies

on an individual student’s self-directed learning. In such isolated environment,

the lack of interactivity has been pointed as the crucial factor for the attrition

problem [87]. Also, supporting high quality interaction among the learners re-

portedly contributes to successful online learning [62, 63]. The bus terminal

model for the matching process of MOOCchat approach made the real-time stu-

118

www.manaraa.com

dent interaction feasible, which in turn might contribute to better retention and

completion of learning in the course, as the qualitative feedback from the par-

ticipants in chapter 3 support.

7.1.2 Practical Contributions of Exploratory Study on Instruc-

tional Designs

The interview study with the secondary school teachers provided practical

ideas about where and how teachers can try to improve instructional ap-

proaches in secondary CS education practice focused on web programming. We

encourage teachers to use the instructional design – task and type of collabora-

tion – task matrices as a guideline in planning the lessons in lab activity-centric

classes; what knowledge to teach, what task to have the students practice, and

what instructional designs or collaborative approaches to use to support them.

The three propositions derived from the findings in section 4.6 also yield prac-

tical contribution that helps teachers interested in how to better teach web pro-

gramming classes. We hope this work can directly inform the design, validation,

and evaluation of instructional designs to help teachers and students seeking to

teach or learn web programming in collaborative ways.

7.1.3 Practical Contributions of GLIDE

The empirical approach with GLIDE for collaborative programming in this

work also illuminated the potential benefits. First, this work open-sourced1 the

1Available at https://github.com/stlim0730/glide

119

www.manaraa.com

educational software application we built, GLIDE2. In chapter 4, we specified

the purpose the software is supposed to serve, which is to integrate scaffolded

collaborative workflow in web programming courses for novice students. Since

it is designed to satisfy the common needs discovered from teachers’ report on

their teaching methods, we argue that the audience of this work, who tries to

teach and learn how to support the feature branch workflow in a scaffolded

and novice-friendly way, can benefit from using GLIDE in teaching them how

to collaboratively program.

The second practical contribution of GLIDE approach is the teaching prac-

tice we presented and the design we carried out; this includes the lesson plans

(chapter 5), the educational context we designed (chapter 5), and students’

learning experience as the expected results in the future (chapter 6). This work

started from the problem statement of “learning how to collaborate has been left

out of CS curriculum despite the significance of collaboration in its lab activi-

ties.” As we presented how to effectively teach young students without deep

background in CS, educators trying to design collaboration-oriented curricula

can directly benefit from the lesson plans example to begin with. Furthermore,

this work verified the feasibility of the lesson plans in an appropriate field-site,

rather than leaving them to be tested. We call for the consideration of the dif-

ference between the educational context described in this work and the actual

environment the audience might want to replicate this teaching practice.

In addition to educators, the students can also benefit from GLIDE approach.

The collaborative workflow they can learn through this novel approach way of

performing is not strictly tied to specific techniques, such as web programming,

they use to build software. Even though this work focused on the introductory

2Available at https://glide.site

120

www.manaraa.com

web programming course due to the several advantages for the procedure of the

research, which include the engaging topic for novice and easy representation

of the student project outcomes, the feature branch workflow is flexible enough

to apply for virtually any types of software development tasks. Especially, the

lesson plans and group project had a strong emphasis on the abstract mental

model of how the collaboration process should be, rather than how to use a

specific set of tools of Git. We expect that the students be able to generalize

the general idea of the effective way of collaboration process to other software

programming tasks throughout their further learning trajectory in CS.

7.2 Theoretical Implications

In this section, we try to reexamine the connection between our empirical ap-

proach and the learning theory on which this work is based. We will first dis-

cuss how social development theory backs up the learning on MOOCchat and

GLIDE.

7.2.1 Revisiting MOOCchat and GLIDE: Focusing on Social

Development Theory

Social development theory by Vygotsky [127] influenced this work as the fun-

damental framework of how learning occurs and how to facilitate it. The key

takeaways of the theory around which this work built were 1) “guided partici-

pation”, also known as scaffolding, that helps learning in the zone of proximal

development and 2) the two crucial roles of language, sign systems, and tools

121

www.manaraa.com

that mediate interaction with more knowledgeable others and students inter-

nalize learning materials, and 3) indirect interaction with the broader society

through language as a socio-cultural product that better better contextualizes

learning. This section reflects on the two empirical approaches we made re-

garding these three aspects.

Relying on the theoretical implications of the social development theory,

the MOOCchat was an attempt to introduce student interaction into extremely

decontextualized education settings. From the perspectives of social develop-

ment theory, MOOCs open more knowledgeable others and interaction with

them. On the contrary, the current work developed MOOCchat approach real-

time matching feature to form ad-hoc groups of students, which gives them the

chance to interact with the more knowledgeable others.

The way the students in a small group on MOOCchat interacted each other

implements the ideas of interaction as the source of learning and language as the

mediator for learning. The specific element intended for learning on MOOCchat

is where the students exchange their ideas in the discussion and have a chance

to change their answers to finally submit. During the discussion, the real-time

chat induces them to reason their initial answers, persuade others, identify er-

rors from others’ references, and negotiate on the final answers, which in turn

help the active process of internalization where each student uses one’s own

language for this whole procedure, rather than passively copying others’ refer-

ences. Thus, we argue that MOOCchat enables student interaction for learning

and also structures their interaction for effective internalization through active

processing of language.

Learning in using GLIDE was also founded on social development theory.

122

www.manaraa.com

First, the design of GLIDE is rooted in guided participation. The feature branch

workflow is generally considered as a difficult topic as reported in the inter-

views with the teachers. The tasks required to perform a project using the fea-

ture branch workflow are out of the students’ reach, considering their actual de-

velopmental level and potential developmental level. Therefore, to pull those

tasks down to the area within the zone of proximal development, selected tasks

among the hard ones had to be scaffolded; using command line interface, hav-

ing many options per command, and understanding the abstract model of Git

workflows. To achieve this, GLIDE was designed as a web-based application

with the graphical user interface instead of command line, dedicated to sup-

port one simple target workflow (the feature branch workflow) while sacrificing

the high levels of flexibility with the commands and options, and tightly cou-

pled with the lecture to help building the abstract model of the workflow before

working on software development. This is where the participating teacher’s

advice was critical in finding the appropriate levels of difficulty of the tasks, to

include them in the common zone of proximal development for the students in

the class.

The second way that learning in GLIDE approach reflected social develop-

ment theory is that the lesson plans for the lecture placed a significant focus

on being able to explain the feature branch workflow to others and discuss it.

The lesson plans had the dedicated time for peer discussion where the students

ask, answer, and explain what they understand in their own language. This

reflects the mediation role of language during the interaction with the more

knowledgeable others in the theory and the findings from the qualitative anal-

ysis suggested that it might have worked as the source of learning. The ideas

exchanged are also supposed to be internalized in language form, which is the

123

www.manaraa.com

key step of learning according to the theory.

Lastly, GLIDE approach also put significant focus on giving the students

the exposure to the standard terminology and widely accepted norms (e.g., not

writing code off directly on the master branch and keeping the commit tree as

simple as possible) as implicit sign systems and language from the culture of

collaborative programming in industry practice. Social development theory ex-

plains the value of this teaching practice that the learners can indirectly interact

with the broader society through the mediating language. By teaching with this

concentration, we argue that learning on GLIDE can be better contextualized

in the society of collaborative programming, which potentially reduces the gap

between learning context and the practice in industry or academia.

7.2.2 Theoretical Contributions of Exploratory Study on In-

structional Designs

The theoretical contribution of the interview study includes a discussion of how

instructional designs from cognitive load theory and cognitive apprenticeship

have been contextualized in web programming tasks. We also illustrated how

those theoretical constructs interplay with the task types that students perform

and collaborative approaches. Another theoretical contribution is that this work

proposed the instructional design and collaboration task matrix as an analytical

framework that other researchers can use to understand and explore the inter-

action between these factors.

124

www.manaraa.com

7.3 Limitations and Challenges

Despite the contributions and implications of this work discussed above, this

work has several limitations.

First, we were not able to have the large sample sizes for quantitative anal-

yses in MOOCchat and GLIDE approaches. Larger sample sizes might have

presented more convincing results on the learning gains through MOOCchat or

the statistical estimates for the treatment effects of GLIDE. Our approach to min-

imize the latter issue was to take the linear mixed-effects model that preserves

observations for each data point, rather than losing by aggregating them.

Second, our observational study didn’t have multiple trials of fieldwork.

This limited the chance of more diverse observation and the robustness of hy-

pothesis testing. More diverse observation might have provided more fresh

insights to the phenomena we observed. Furthermore, incremental variation

in the treatment between trials might have generated interesting findings that

we could not observe in this work. For example, after the quantitative evalu-

ation on the students’ learning experience in chapter 6, another similar trial of

the intervention in a comparable settings with a few user interface tweaks (e.g.,

showing commit tree for task awareness cue or other branches with user avatars

for a group awareness cue) on the software would have yielded the chance to

examine the influence of the changes made.

We argue that the two limitations of this work presented above stem from

one practical challenge we experienced throughout the research procedure. The

most challenging part of conducting fieldwork was to establish partnerships

with schools. In this sort of research that engages education entities or local

125

www.manaraa.com

communities, establishing strong connections as stakeholders and partners for

the research gets huge significance. However, it was practically hard to find

partnerships available because of several reasons. The two most critical barriers

we encountered through this dissertation work were 1) the policy of schools and

online learning providers giving not enough flexibility in lessons to allow our

intervention and 2) teachers’ hesitation for participation due to the perceived

workload for a joint work. To overcome the limitations above, we hope to see

more attempts to bring novel approaches to better learning experience and out-

comes through partnerships between education practitioners and scholars in CS

education research community.

7.4 Future Work

This section sheds light on how this work can be expanded, based on the re-

search procedure and the findings reported. By answering those questions pro-

posed below, we believe that follow-up research can build on top of the two

empirical approaches of MOOCchat and GLIDE.

7.4.1 How to Better Facilitate Student Discussion through Bet-

ter Matching Schemes?

One of the two key features of MOOCchat was the real-time matching to form

ad-hoc small groups of students in order to give them a change to have more

knowledgeable others to teach or learn from. One of the limitations of the cur-

rent version of the software reported in chapter 3 was that it didn’t have any

126

www.manaraa.com

matching schemes to form the student groups. To better facilitate students dis-

cussion, which is the source of their learning on MOOCchat, future work may

try various criteria to form better combinations of discussants. One potentially

promising matching scheme is to make each small group have the maximum

possible variety of initial answer submissions, so that they may exchange argu-

ment in the discussion and identify their logical fallacy. This might have the

students more actively engage in the discussion and also contribute to fairer

chance to learn on MOOCchat, because a group of students with the same ini-

tial submissions can’t get the same quality of discussion as another group of

students with more variety of initial choices; the different points of view shared

in the discussion will make it richer.

7.4.2 How Will GLIDE Approach Help Learning Advanced

Level Techniques?

GLIDE approach helped novice students learn the abstract model of collabo-

ration process. Bill’s anecdote on self-directed learning on Git command line

tools after our intervention in chapter 6 suggests a potential follow-up question

to ask: how and how much will the initial experience with GLIDE help learn-

ing the advanced Git techniques for collaboration? GLIDE approach gave the

students early exposure to basic terminology and the feature branch workflow.

Two of the reasons Git is widely considered hard are the barrier that the termi-

nology (jargon) creates and the implicit workflow; for example, it is possible for

a user to know what a branch means and the command line “git branch my-

branch” does (with the help from references or by rote memory), but not what

127

www.manaraa.com

should come later for integration process. Based on the effectiveness of GLIDE

approach in establishing the abstract model of collaboration process, a possi-

ble answer might be that students having the experience with GLIDE learn or

perform better in learning or using the advanced level collaboration techniques.

Another future work related to the advanced level techniques is to equip

GLIDE software with command line console that accepts Git commands, which

is an optional advanced feature. This will provide the user with an opportunity

to practice and learn the command line tools as well as the practical benefit of

the flexibility of Git command line tools.

7.4.3 How Can Non-CS Majors Benefit from GLIDE Approach?

As the applicability and usefulness of programming increases in diverse disci-

plines, students in other areas who write computer code can benefit from the

scaffolded collaborative programming that GLIDE approach introduced. The

examples of programming code or script that non-CS majors write include code

for statistical or scientific analysis in R or MATLAB, computational designs or

architecture code in Rhino, and visual designs and arts in Processing. Simi-

larly to the problem identification within CS discussed in chapter 1, education

in these non-CS areas is also extremely syntax-oriented, while collaboration still

has significant emphasis across the areas. This suggests another potential con-

tribution that GLIDE approach can be employed to support learning through

collaborative programming activities in those non-CS areas.

A few additional features in GLIDE software are required to support those

programming languages because the current version we used for this work only

128

www.manaraa.com

supports the three web programming languages of HTML, CSS, and JavaScript.

The two essential features to be required include the syntax highlighting of the

editor for each programming language and the live preview adjusted to support

rendered outputs or console outputs. Except for these two language-specific

features, the workflow-related skills students can learn while using GLIDE re-

mains the same, as well as the overall benefit of using the standard version

control system.

GLIDE approach in this work has focused on lab activities for web program-

ming, but the potential of Git as a flexible collaboration framework also apply

to other types of digital content creation work. In other words, future work

may extend this work to identifying effective collaboration workflows for dig-

ital content generation activities that are not related to coding (e.g., 3D model-

ing or image / audio editing) and how to better teach students the workflow.

Git is a highly flexible tool that can keep track of changes of not only text files

(e.g., source code), but binary files (e.g., images or audio), so that it can be used

for several different kinds of projects. Non-coding content generation activi-

ties might be better supported by different workflows than the feature branch

workflow because of the different ways of coordination and integration, which

might require different iterative process. These remaining questions may ex-

pand learning how to collaborate.

7.5 Conclusion

Overall, the series of studies presented in this dissertation work has enriched

our understanding of how to implement collaborative programming in CS ed-

129

www.manaraa.com

ucation. Social development theory informed us about how learning occurs

through student interaction and how to facilitate it. To facilitate online learning

where student interaction has been largely missing, we found the real-time dis-

cussion on MOOCchat improving the users’ quiz performance. And then, we

explored what the current teachers want to teach, what needs to be taught, and

how the instructions should be. From the exploration of the educational needs,

we found the set of lesson plans to teach a standard collaboration workflow

with the supporting software tool, GLIDE, made the novel teaching approach

feasible and the student collaboration process more equitable.

As the primary findings of this work suggest, well-structured collaboration

process may lead us to more equitable contribution among the students. As

more and more students, including younger age groups and non-CS majors,

will want to or be required to learn programming skills in modern society, CS

classrooms are going to experience the increased levels of diversity across the

levels. In addressing and embracing the differences in background and skill-

sets between learners through collaborative programming education, we hope

this work provides a potential groundwork.

130

www.manaraa.com

BIBLIOGRAPHY

[1] Code.org.

[2] CS4all: NYC.

[3] D. Robert Adams. Integration early: a new approach to teaching web
application development. dl.acm.org, 23(1):97–104, 2007.

[4] Eric Allen, Robert Cartwright, and Brian Stoler. DrJava. In Proceedings of
the 33rd SIGCSE technical symposium on Computer science education - SIGCSE
’02, volume 34, pages 137–137. ACM Press, 2002.

[5] William F. Atchison, Earl J. Schweppe, William Viavant, David M. Young,
Samuel D. Conte, John W. Hamblen, Thomas E. Hull, Thomas A. Keenan,
William B. Kehl, Edward J. McCluskey, Silvio O. Navarro, and Werner C.
Rheinboldt. Curriculum 68: Recommendations for academic programs in
computer science: a report of the ACM curriculum committee on com-
puter science. Communications of the ACM, 11(3):151–197, March 1968.

[6] Atlassian. Git Feature Branch Workflow | Atlassian Git Tutorial.

[7] Atlassian. Git Workflow | Atlassian Git Tutorial.

[8] Atlassian. What is version control | Atlassian Git Tutorial.

[9] Richard H. Austing, Bruce H. Barnes, Della T. Bonnette, Gerald L. Engel,
and Gordon Stokes. Curriculum ’78: recommendations for the under-
graduate program in computer science— a report of the ACM curriculum
committee on computer science. Communications of the ACM, 22(3):147–
166, March 1979.

[10] Sasha Barab and Kurt Squire. Design-Based Research: Putting a Stake in
the Ground. Journal of the Learning Sciences, 13:1–14, January 2004.

[11] Sasha A. Barab and Jonathan A. Plucker. Smart People or Smart Con-
texts? Cognition, Ability, and Talent Development in an Age of Situated
Approaches to Knowing and Learning. Educational Psychologist, 37(3):165–
182, September 2002.

[12] Brigid Barron. When Smart Groups Fail. Journal of the Learning Sciences,
12(3):307–359, July 2003.

131

www.manaraa.com

[13] Douglas Bates, Martin Mchler, Ben Bolker, and Steve Walker. Fitting
Linear Mixed-Effects Models Using lme4. Journal of Statistical Software,
67(1):1–48, October 2015.

[14] Jon Beck. Fair Division As a Means of Apportioning Software Engineering
Class Projects. In Proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education, SIGCSE ’08, pages 68–71, New York, NY, USA,
2008. ACM. event-place: Portland, OR, USA.

[15] Mordechai Ben-Ari. Constructivism in Computer Science Education. In
Proceedings of the Twenty-ninth SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’98, pages 257–261, New York, NY, USA, 1998.
ACM.

[16] Mordechai Ben-Ari. Constructivism in Computer Science Education. Jour-
nal of Computers in Mathematics and Science Teaching, 20(1):45–73, 2001.

[17] Esmail Bonakdarian. Pushing Git & GitHub in Undergraduate Computer
Science Classes. J. Comput. Sci. Coll., 32(3):119–125, January 2017.

[18] Kristy Elizabeth Boyer, August A. Dwight, R. Taylor Fondren, Mladen A.
Vouk, and James C. Lester. A Development Environment for Distributed
Synchronous Collaborative Programming. In Proceedings of the 13th An-
nual Conference on Innovation and Technology in Computer Science Education,
ITiCSE ’08, pages 158–162, New York, NY, USA, 2008. ACM.

[19] John Britton and Tim Berglund. Using Version Control in the Classroom
(Abstract Only). In Proceeding of the 44th ACM Technical Symposium on
Computer Science Education, SIGCSE ’13, pages 753–753, New York, NY,
USA, 2013. ACM. event-place: Denver, Colorado, USA.

[20] Darci Burdge and Stoney Jackson. Git 101: Foundations for a Common
Workflow to Contribute to HFOSS: Tutorial Presentation. J. Comput. Sci.
Coll., 31(6):18–20, June 2016.

[21] Darci Burdge and Stoney Jackson. Git 102: A Common Workflow to Con-
tribute to HFOSS: Tutorial Presentation. J. Comput. Sci. Coll., 31(6):34–36,
June 2016.

[22] Michael E. Caspersen and Jens Bennedsen. Instructional design of a pro-
gramming course. In Proceedings of the third international workshop on Com-
puting education research - ICER ’07, pages 111–111. ACM Press, 2007.

132

www.manaraa.com

[23] Lillian Cassel, Alan Clements, Gordon Davies, Mark Guzdial, Rene Mc-
Cauley, Andrew McGettrick, Bob Sloan, Larry Snyder, Paul Tymann, and
Bruce W. Weide. Computer Science Curriculum 2008: An Interim Revi-
sion of CS 2001. Technical report, ACM, New York, NY, USA, 2008.

[24] Paul Chandler and John Sweller. Cognitive Load Theory and the Format
of Instruction. Cognition and Instruction, 8(4):293–332, 1991.

[25] Carl Chang, Peter J. Denning, James H. Cross II, Gerald Engel, Robert
Sloan, Doris Carver, Richard Eckhouse, Willis King, Francis Lau, Su-
san Mengel, Pradip Srimani, Eric Roberts, Russell Shackelford, Richard
Austing, C. Fay Cover, Gordon Davies, Andrew McGettrick, G. Michael
Schneider, and Ursula Wolz. Computing Curricula 2001: Final Report.
Technical report, 2001.

[26] Joe D. Chase and Edward G. Okie. Combining cooperative learning and
peer instruction in introductory computer science. In ACM SIGCSE Bul-
letin, volume 32, pages 372–376. ACM, 2000.

[27] Ed H. Chi and Ruben Ortega. Expanding CS Education; Improving Soft-
ware Development. Commun. ACM, 53(9):8–9, September 2010.

[28] Herbert H. Clark, Robert Schreuder, and Samuel Buttrick. Common
ground at the understanding of demonstrative reference. Journal of ver-
bal learning and verbal behavior, 22(2):245–258, 1983.

[29] Peter J. Clarke, Debra Davis, Tariq M. King, Jairo Pava, and Edward L.
Jones. Integrating Testing into Software Engineering Courses Sup-
ported by a Collaborative Learning Environment. Trans. Comput. Educ.,
14(3):18:1–18:33, October 2014.

[30] P Cobb, K McClain, and K Gravemeijer. Learning about statistical covari-
ation. Cognition and instruction, 2003.

[31] Derrick Coetzee, Seongtaek Lim, Armando Fox, Bjorn Hartmann, and
Marti A. Hearst. Structuring interactions for large-scale synchronous peer
learning. In Proceedings of the 18th ACM Conference on Computer Supported
Cooperative Work & Social Computing, pages 1139–1152. ACM, 2015.

[32] Allan Collins, John Seely Brown, and Ann Holum. Cognitive apprentice-
ship: Making thinking visible. American Educator, 15:6–11, 38–46, 1991.

133

www.manaraa.com

[33] Allan Collins, John Seely Brown, and Susan E Newman. Cognitive ap-
prenticeship: teaching the craft of reading, writing, and mathtematics.
Center for the Study of Reading Technical Report; no. 403., 1987.

[34] Catherine H. Crouch and Eric Mazur. Peer Instruction: Ten years of ex-
perience and results. American Journal of Physics, 69(9):970–977, August
2001.

[35] Sayamindu Dasgupta, William Hale, Andrs Monroy-Hernndez, and Ben-
jamin Mako Hill. Remixing as a Pathway to Computational Thinking. In
Proceedings of the 19th ACM Conference on Computer-Supported Cooperative
Work & Social Computing - CSCW ’16, pages 1436–1447. ACM Press, 2016.

[36] Richard Davis, Yasmin Kafai, Veena Vasudevan, and Eunkyoung Lee. The
Education Arcade: Crafting, Remixing, and Playing with Controllers for
Scratch Games. In Proceedings of the 12th International Conference on Inter-
action Design and Children, IDC ’13, pages 439–442, New York, NY, USA,
2013. ACM.

[37] Louis Deslauriers, Ellen Schelew, and Carl Wieman. Improved learning
in a large-enrollment physics class. science, 332(6031):862–864, 2011.

[38] R. Duque and C. Bravo. Analyzing Work Productivity and Program Qual-
ity in Collaborative Programming. In 2008 The Third International Confer-
ence on Software Engineering Advances, pages 270–276, October 2008.

[39] Lisa Ede and Andrea Lunsford. Singular Texts/Plural Authors: Perspectives
on Collaborative Authoring. Southern Illinois University Press, Carbondale,
1990.

[40] Stephen H. Edwards, Daniel S. Tilden, and Anthony Allevato. Pythy. In
Proceedings of the 45th ACM technical symposium on Computer science educa-
tion - SIGCSE ’14, pages 641–646. ACM Press, 2014.

[41] Gijsbert Erkens, Jos Jaspers, Maaike Prangsma, and Gellof Kanselaar. Co-
ordination Processes in Computer Supported Collaborative Writing. Com-
put. Hum. Behav., 21(3):463–486, May 2005.

[42] Martin R. Fellenz. Toward Fairness in Assessing Student Groupwork: A
Protocol for Peer Evaluation of Individual Contributions. Journal of Man-
agement Education, 30(4):570–591, August 2006.

134

www.manaraa.com

[43] Deborah A. Fields, Veena Vasudevan, and Yasmin B. Kafai. The Program-
mers’ Collective: Connecting Collaboration and Computation in a High
School Scratch Mashup Coding Workshop. June 2014.

[44] K-12 Computer Science Framework. K-12 Computer Science Framework.

[45] Jos Fransen, Paul A. Kirschner, and Gijsbert Erkens. Mediating team effec-
tiveness in the context of collaborative learning: The importance of team
and task awareness. Computers in Human Behavior, 27(3):1103 – 1113, 2011.

[46] William Frawley. Vygotsky and Cognitive Science: Language and the Unifica-
tion of the Social and Computational Mind. Harvard University Press, 1997.

[47] Jeanne Marcum Gerlach. Is this collaboration? New Directions for Teaching
and Learning, 1994(59):5–14, 1994.

[48] Catherine Wilson Gillespie and Sally Beisser. Developmentally Appro-
priate LOGO Computer Programming with Young Children. Information
Technology in Childhood Education Annual, 2001(1):229–244, 2001.

[49] GitHub. GitHub Pages.

[50] Robert Glaser. Education and thinking: The role of knowledge. American
Psychologist, 39(2):93–104, 1984.

[51] Tom Gross, Chris Stary, and Alex Totter. User-centered awareness in
computer-supported cooperative work-systems: Structured embedding
of findings from social sciences. International Journal of Human-Computer
Interaction, 18(3):323–360, 2005.

[52] Philip J. Guo. Online python tutor. In Proceeding of the 44th ACM techni-
cal symposium on Computer science education - SIGCSE ’13, pages 579–579.
ACM Press, 2013.

[53] Said Hadjerrouit and Said. Java as first programming language. ACM
SIGCSE Bulletin, 30(2):43–47, June 1998.

[54] Ken T. N. Hartness. Eclipse and CVS for Group Projects. J. Comput. Sci.
Coll., 21(4):217–222, April 2006.

[55] James E. Heliotis and James E. Easing up on the introductory computer
science syllabus. In Proceeding of the 24th ACM SIGPLAN conference com-

135

www.manaraa.com

panion on Object oriented programming systems languages and applications -
OOPSLA ’09, pages 683–683. ACM Press, 2009.

[56] Morten Hertzum. Collaborative information seeking: The combined ac-
tivity of information seeking and collaborative grounding. Information
Processing & Management, 44(2):957–962, March 2008.

[57] Christopher D. Hundhausen. Integrating Algorithm Visualization Tech-
nology into an Undergraduate Algorithms Course: Ethnographic Stud-
ies of a Social Constructivist Approach. Comput. Educ., 39(3):237–260,
November 2002.

[58] Teresa Hbscher-Younger and N. Hari Narayanan. Constructive and Col-
laborative Learning of Algorithms. In Proceedings of the 34th SIGCSE Tech-
nical Symposium on Computer Science Education, SIGCSE ’03, pages 6–10,
New York, NY, USA, 2003. ACM.

[59] Ville Isomttnen and Michael Cochez. Challenges and Confusions in
Learning Version Control with Git. In Information and Communication Tech-
nologies in Education, Research, and Industrial Applications Communications
in Computer and Information Science: 10th International Conference, ICTERI
2014, Kherson, Ukraine, June 9-12, 2014, pages 178–193. Springer, 2014.

[60] Maya Israel, Quentin M. Wherfel, Saadeddine Shehab, Oliver Melvin, and
Todd Lash. Describing Elementary Students’ Interactions in K-5 Puzzle-
based Computer Science Environments Using the Collaborative Comput-
ing Observation Instrument (C-COI). In Proceedings of the 2017 ACM Con-
ference on International Computing Education Research, ICER ’17, pages 110–
117, New York, NY, USA, 2017. ACM.

[61] Jeroen Janssen, Femke Kirschner, Gijsbert Erkens, Paul A. Kirschner, and
Fred Paas. Making the Black Box of Collaborative Learning Transpar-
ent: Combining Process-Oriented and Cognitive Load Approaches. Edu-
cational Psychology Review, 22(2):139–154, June 2010.

[62] Hanan Khalil and Martin Ebner. Interaction possibilities in MOOCshow
do they actually happen? In 3rd International Conference on Higher Educa-
tion Development” Future Visions for Higher Education Development”, pages
1–24. ., 2013.

[63] Hanan Khalil and Martin Ebner. MOOCs completion rates and possible
methods to improve retention-A literature review. In EdMedia+ Innovate

136

www.manaraa.com

Learning, pages 1305–1313. Association for the Advancement of Comput-
ing in Education (AACE), 2014.

[64] Femke Kirschner, Fred Paas, and Paul A. Kirschner. A Cognitive Load
Approach to Collaborative Learning: United Brains for Complex Tasks.
Educational Psychology Review, 21(1):31–42, March 2009.

[65] Timothy Koschmann. CSCL : Theory and Practice of An Emerging Paradigm.
Routledge, October 2012.

[66] Oren Laadan, Jason Nieh, and Nicolas Viennot. Teaching Operating Sys-
tems Using Virtual Appliances and Distributed Version Control. In Pro-
ceedings of the 41st ACM Technical Symposium on Computer Science Education,
SIGCSE ’10, pages 480–484, New York, NY, USA, 2010. ACM. event-place:
Milwaukee, Wisconsin, USA.

[67] Bruce E Larson. Classroom discussion: a method of instruction and a
curriculum outcome. Teaching and Teacher Education, 16(5):661–677, July
2000.

[68] Joseph Lawrance, Seikyung Jung, and Charles Wiseman. Git on the cloud
in the classroom. In Proceeding of the 44th ACM technical symposium on
Computer science education - SIGCSE ’13, pages 639–639. ACM Press, 2013.

[69] Arthur H. Lee. A manageable web software architecture. In Proceedings of
the 34th SIGCSE technical symposium on Computer science education - SIGCSE
’03, volume 35, pages 229–229. ACM Press, 2003.

[70] Carol D. Lee and Peter Smagorinsky. Vygotskian perspectives on literacy re-
search: Constructing meaning through collaborative inquiry. Cambridge Uni-
versity Press, 2000.

[71] Cen Li, Zhijiang Dong, Roland H. Untch, and Michael Chasteen. Engag-
ing computer science students through gamification in an online social
network based collaborative learning environment. International Journal
of Information and Education Technology, 3(1):72, 2013.

[72] Billy B. L. Lim. Teaching Web development technologies in CS/IS cur-
ricula. In Proceedings of the twenty-ninth SIGCSE technical symposium on
Computer science education - SIGCSE ’98, volume 30, pages 107–111. ACM
Press, 1998.

137

www.manaraa.com

[73] Seongtaek Lim, Rama Adithya Varanasi, and Tapan Parikh. GLIDE (Git-
Learning IDE; Integrated Development Environment): In-class Collabo-
ration in Web Engineering Curriculum for Youths (Abstract Only). In
Proceedings of the 49th ACM Technical Symposium on Computer Science Ed-
ucation, SIGCSE ’18, pages 1112–1112, New York, NY, USA, 2018. ACM.
event-place: Baltimore, Maryland, USA.

[74] Raymond Lister. After the gold rush: Toward sustainable scholarship in
computing. In Proceedings of the tenth conference on Australasian computing
education (ACE ’08), pages 3–17. Australian Computer Society, Inc., 2008.

[75] Thomas R. Lord. A comparison between traditional and constructivist
teaching in college biology. Innovative Higher Education, 21(3):197–216,
1997.

[76] Thomas R. Lord. 101 reasons for using cooperative learning in biology
teaching. The American Biology Teacher, 63(1):30–38, 2001.

[77] Brian Magerko, Jason Freeman, Tom McKlin, Scott McCoid, Tom Jenkins,
and Elise Livingston. Tackling Engagement in Computing with Computa-
tional Music Remixing. In Proceeding of the 44th ACM Technical Symposium
on Computer Science Education, SIGCSE ’13, pages 657–662, New York, NY,
USA, 2013. ACM.

[78] Qusay H. Mahmoud. A mobile web-based approach to introductory pro-
gramming. In Proceedings of the 16th annual joint conference on Innovation
and technology in computer science education - ITiCSE ’11, pages 334–334.
ACM Press, 2011.

[79] Robert McCormick. Conceptual and Procedural Knowledge. International
Journal of Technology and Design Education, 7(1-2):141–159, January 1997.

[80] Rebecca Mercuri, Nira Herrmann, and Jeffrey Popyack. Using HTML
and JavaScript in introductory programming courses. In Proceedings of
the twenty-ninth SIGCSE technical symposium on Computer science education
- SIGCSE ’98, volume 30, pages 176–180. ACM Press, 1998.

[81] Bertrand Meyer. Beyond Folk Pedagogy, 2018.

[82] Matthew B Miles and A Michael Huberman. Qualitative data analysis:
An expanded sourcebook. 1994. Beverly Hills: Sage Publications, 1994.

138

www.manaraa.com

[83] Barbara J. Millis. Cooperative learning in higher education: Across the disci-
plines, across the academy. Stylus, 2010.

[84] Hiroshi Natsu, Jesus Favela, Alberto L. Morn, Dominique Decouchant,
and Ana M. Martinez-Enriquez. Distributed Pair Programming on the
Web. In Proceedings of the 4th Mexican International Conference on Computer
Science, ENC ’03, pages 81–, Washington, DC, USA, 2003. IEEE Computer
Society.

[85] Allen Newell, Paul S Rosenbloom, and John E Laird. Symbolic Architec-
tures for Cognition. 1989.

[86] John Nordlof. Vygotsky, Scaffolding, and the Role of Theory in Writing
Center Work. The Writing Center Journal, 34(1):45–64, 2014.

[87] Rena M. Palloff and Keith Pratt. The virtual student: A profile and guide to
working with online learners. John Wiley & Sons, 2003.

[88] Elizabeth Patitsas, Michelle Craig, and Steve Easterbrook. Comparing and
contrasting different algorithms leads to increased student learning. In
Proceedings of the ninth annual international ACM conference on International
computing education research - ICER ’13, pages 145–145. ACM Press, 2013.

[89] Michael Quinn Patton. Qualitative evaluation and research methods. SAGE
Publications, inc, 1990.

[90] Jean Piaget and Margaret Cook. The origins of intelligence in children, vol-
ume 8. International Universities Press New York, 1952.

[91] Jules M. Pieters and Henneke F. M. de Bruijn. Learning Environments
for Cognitive Apprenticeship: From Experience to Expertise. In Cogni-
tive Tools for Learning, pages 241–248. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1992.

[92] Yizhou Qian and James Lehman. Students’ Misconceptions and Other
Difficulties in Introductory Programming. ACM Transactions on Computing
Education, 18(1):1–24, October 2017.

[93] Atanas Radenski. ”Python first”. In Proceedings of the 11th annual SIGCSE
conference on Innovation and technology in computer science education - ITICSE
’06, volume 38, pages 197–201. ACM Press, 2006.

139

www.manaraa.com

[94] Anthony Ralston and Mary Shaw. Curriculum ’78—is computer science
really that unmathematical? Communications of the ACM, 23(2):67–70,
February 1980.

[95] Matt Ratto, R. Benjamin Shapiro, Tan Minh Truong, and William G. Gris-
wold. The activeclass project: Experiments in encouraging classroom par-
ticipation. In Designing for Change in Networked Learning Environments,
pages 477–486. Springer, 2003.

[96] David Reed. Rethinking CS0 with JavaScript. ACM SIGCSE Bulletin,
33(1):100–104, March 2001.

[97] Karen L. Reid and Gregory V. Wilson. Learning by Doing: Introducing
Version Control As a Way to Manage Student Assignments. In Proceed-
ings of the 36th SIGCSE Technical Symposium on Computer Science Education,
SIGCSE ’05, pages 272–276, New York, NY, USA, 2005. ACM. event-place:
St. Louis, Missouri, USA.

[98] Alexander Renkl, Robin Stark, Hans Gruber, and Heinz Mandl. Learn-
ing from Worked-Out Examples: The Effects of Example Variability and
Elicited Self-Explanations. Contemporary Educational Psychology, 23(1):90–
108, 1998.

[99] Mitchel Resnick, Brian Silverman, Yasmin Kafai, John Maloney, An-
drs Monroy-Hernndez, Natalie Rusk, Evelyn Eastmond, Karen Brennan,
Amon Millner, Eric Rosenbaum, and Jay Silver. Scratch: Programming for
All. Communications of the ACM, 52(11):60–67, November 2009.

[100] Jochen Rick and Mark Guzdial. Situating CoWeb: a scholarship of appli-
cation. International Journal of Computer-Supported Collaborative Learning,
1(1):89–115, March 2006.

[101] Debra Sanders and Dorette Sugg Welk. Strategies to scaffold student
learning: applying Vygotsky’s Zone of Proximal Development. Nurse ed-
ucator, 30(5):203–207, 2005.

[102] Luis Miguel Serrano Cmara, Maximiliano Paredes Velasco, and Jess ngel
Velzquez-Iturbide. Evaluation of a Collaborative Instructional Frame-
work for Programming Learning. In Proceedings of the 17th ACM An-
nual Conference on Innovation and Technology in Computer Science Education,
ITiCSE ’12, pages 162–167, New York, NY, USA, 2012. ACM.

140

www.manaraa.com

[103] Russell Shackelford, Barry Lunt, Andrew McGettrick, Robert Sloan,
Heikki Topi, Gordon Davies, Reza Kamali, James Cross, John Impagli-
azzo, Richard LeBlanc, Russell Shackelford, Andrew McGettrick, Robert
Sloan, Heikki Topi, Gordon Davies, Reza Kamali, James Cross, John Im-
pagliazzo, Richard LeBlanc, and Barry Lunt. Computing Curricula 2005:
The Overview Report. Technical Report 1595932593, ACM Press, New
York, New York, USA, 2005.

[104] N Shah, C Lewis, and Roxane Caires. Analyzing equity in collaborative
learning situations: A comparative case study in elementary computer
science. In Proceedings of International Conference of the Learning Sciences,
ICLS, volume 1, pages 495–502, January 2014.

[105] Niral Shah, Colleen M. Lewis, Roxane Caires, Nasar Khan, Amirah
Qureshi, Danielle Ehsanipour, and Noopur Gupta. Building Equitable
Computer Science Classrooms: Elements of a Teaching Approach. In Pro-
ceeding of the 44th ACM Technical Symposium on Computer Science Education,
SIGCSE ’13, pages 263–268, New York, NY, USA, 2013. ACM. event-place:
Denver, Colorado, USA.

[106] David Shernoff, Mihaly Csikszentmihalyi, Barbara Shneider, and Elisa Sh-
ernoff. Student Engagement in High School Classrooms from the Perspec-
tive of Flow Theory. School Psychology Quarterly, 18(2):158–176, 2003.

[107] David Shernoff and Lisa Hoogstra. Continuing motivation beyond the
high school classroom. New Directions for Child and Adolescent Development,
2001(93):73–87, 2001.

[108] Beth Simon, Ruth Anderson, Crystal Hoyer, and Jonathan Su. Preliminary
Experiences with a Tablet PC Based System to Support Active Learning in
Computer Science Courses. In Proceedings of the 9th Annual SIGCSE Con-
ference on Innovation and Technology in Computer Science Education, ITiCSE
’04, pages 213–217, New York, NY, USA, 2004. ACM.

[109] Barbara Leigh Smith and Jean T. MacGregor. What is collaborative learning.
Washington, 1992.

[110] Michelle K. Smith, William B. Wood, Wendy K. Adams, Carl Wieman,
Jennifer K. Knight, Nancy Guild, and Tin Tin Su. Why peer discussion
improves student performance on in-class concept questions. Science,
323(5910):122–124, 2009.

[111] Leonard Springer, Mary Elizabeth Stanne, and Samuel S. Donovan. Ef-

141

www.manaraa.com

fects of Small-Group Learning on Undergraduates in Science, Mathemat-
ics, Engineering, and Technology: A Meta-Analysis. Review of Educational
Research, 69(1):21–51, March 1999.

[112] Maitta Spronken, Rob W. Holland, Bernd Figner, and Ap Dijksterhuis.
Temporal focus, temporal distance, and mind-wandering valence: Results
from an experience sampling and an experimental study. Consciousness
and Cognition, 41:104–118, April 2016.

[113] Gerry Stahl, Timothy Koschmann, and Dan Suthers. Computer-
supported collaborative learning: An historical perspective. In Cambridge
handbook of the learning sciences. Cambridge University Press, Cambridge,
UK, February 2014.

[114] Chris Stephenson and Cameron Wilson. Reforming K-12 computer sci-
ence education what will your story be? ACM Inroads, 3(2):43–46, 2012.

[115] Marty Stepp, Jessica Miller, and Victoria Kirst. A ”CS 1.5” introduction to
web programming. In Proceedings of the 40th ACM technical symposium on
Computer science education - SIGCSE ’09, volume 41, pages 121–121. ACM
Press, 2009.

[116] Anselm Strauss and Juliet M Corbin. Basics of qualitative research: Grounded
theory procedures and techniques. Sage Publications, Inc, 1990.

[117] R Core Team. R: a language and environment for statistical computing,
2018.

[118] Despina Tsompanoudi, Maya Satratzemi, and Stelios Xinogalos. Explor-
ing the Effects of Collaboration Scripts Embedded in a Distributed Pair
Programming System. In Proceedings of the 18th ACM Conference on In-
novation and Technology in Computer Science Education, ITiCSE ’13, pages
225–230, New York, NY, USA, 2013. ACM.

[119] Allen B. Tucker and Allen B. Computing Curricula 1991. Communications
of the ACM, 34(6):68–84, June 1991.

[120] Tomoyuki Urai, Takeshi Umezawa, and Noritaka Osawa. Enhancements
to Support Functions of Distributed Pair Programming Based on Action
Analysis. In Proceedings of the 2015 ACM Conference on Innovation and Tech-
nology in Computer Science Education, ITiCSE ’15, pages 177–182, New York,
NY, USA, 2015. ACM.

142

www.manaraa.com

[121] Linn Van Dyne and Jon L. Pierce. Psychological ownership and feelings of
possession: Three field studies predicting employee attitudes and organi-
zational citizenship behavior. Journal of Organizational Behavior, 25(4):439–
459, 2004.

[122] Jeroen J. G. Van Merrinboer. Strategies for Programming Instruction in
High School: Program Completion vs. Program Generation. Journal of
Educational Computing Research, 6(3):265–285, August 1990.

[123] D. Van Strien. An Introduction to Version Control Using GitHub Desktop.
The Programming Historian, June 2016.

[124] Aurora Vizcano, Juan Contreras, Jess Favela, and Manuel Prieto. An
Adaptive, Collaborative Environment to Develop Good Habits in Pro-
gramming. In Gilles Gauthier, Claude Frasson, and Kurt VanLehn, ed-
itors, Intelligent Tutoring Systems, Lecture Notes in Computer Science,
pages 262–271. Springer Berlin Heidelberg, 2000.

[125] Lev S. Vygotsky. Language and thought. Massachusetts Institute of Tech-
nology Press, Ontario, Canada, 1962.

[126] Lev S. Vygotsky. Interaction between learning and development. Readings
on the development of children, 23(3):34–41, 1978.

[127] Lev S. Vygotsky. Mind in society: The development of higher psychological
processes. Harvard university press, 1980.

[128] Noreen M. Webb. Peer interaction and learning in cooperative small
groups. Journal of Educational Psychology, 74(5):642–655, 1982.

[129] Noreen M. Webb. Peer interaction and learning in small groups. Interna-
tional Journal of Educational Research, 13(1):21–39, January 1989.

[130] Noreen M. Webb. Task-Related Verbal Interaction and Mathematics
Learning in Small Groups. Journal for Research in Mathematics Education,
22(5):366, November 1991.

[131] Jacqueline Whalley and Nadia Kasto. A Qualitative Think-aloud Study of
Novice Programmers’ Code Writing Strategies. In Proceedings of the 2014
Conference on Innovation & Technology in Computer Science Education, ITiCSE
’14, pages 279–284, New York, NY, USA, 2014. ACM.

143

www.manaraa.com

[132] David Wood, Jerome S. Bruner, and Gail Ross. The Role of Tutoring in
Problem Solving. Journal of Child Psychology and Psychiatry, 17(2):89–100,
April 1976.

[133] Sylvia da Rosa Zipitra. Piaget and Computational Thinking. In Proceed-
ings of the 7th Computer Science Education Research Conference, CSERC ’18,
pages 44–50, New York, NY, USA, 2018. ACM.

144

